Реферат Факторы среды и их действия на организмы и экосистемы
Работа добавлена на сайт bukvasha.net: 2015-10-28Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
от 25%
договор
ФАКТОРЫ СРЕДЫ И ИХ ДЕЙСТВИЕ НА ОРГАНИЗМЫ И ЭКОСИСТЕМЫ
1. Условия жизни, ресурсы и адаптации организмов
2. Классификации экологических факторов
3. Общие закономерности совместного действия факторов на организмы
а) Понятие об оптимуме
б) Понятие о толерантности
в) Закон Либиха, или закон ограничивающего фактора
г) Правило предварения
д) Принцип стациальной верности
е) Правило зональной смены ярусов
1. Условия жизни, ресурсы и адаптации организмов
Как было сказано во второй лекции, период со второй половины (1866 г.) XIX до середины (1936 г.) XX века (6 этап) называется периодом факториальной экологии.
Организмы – это реальные носители жизни, самостоятельные «ячейки» обмена веществ. Они потребляют из окружающей среды необходимые вещества и выделяют в нее ненужные им – продукты обмена, которые, в свою очернедь, могут быть использованы другими организмами. И не только продукты обмены, но и сами организмы, как в жизни, так и после смерти, тоже становятся пищей для других живых существ.
Все эти процессы обмена протекают в сложной, динамичной обстановке естественной среды обитания, так как находятся под постоянным воздействием комплекса факторов. Совокупность этих факторов составляют условия жизни организма. Приспособления к постоянно меняющимся – в течение суток, года, жизни – условиям жизни, или факторам среды, называются адаптациями. Адаптации проявляются на всех уровнях биологического спектра – от биохимии клеток и поведения отдельных организмов до строения и функционирования сообществ и экологических систем. Все адаптации выработаны исторически и в результате их сформировались специфические для каждой географической зоны сообщества растений и животных. Одной из главных задач экологии является изучение адаптаций организмов и экосистем к условиям жизни, или экологическим факторам.
Следует отличать понятие «условия жизни» от понятия «ресурсы». Различия между ними заключаются в том, что условия жизни обеспечивают - «обусловливают», жизнедеятельность растений и животных, они могут изменяться под их влиянием, но сами при этом не расходуются, не исчерпываются. И ни один организм не способен сделать условия жизни недоступными для другого организма.
Ресурсы организма – это все, что он потребляет, за ними стоят количественные показатели, которые могут уменьшаться – «исчерпываться» в процессе потребления. Это вещества, которыми живые организмы питаются и из которых состоят их тела (пищевые ресурсы), энергия, которая вовлекается в обменные процессы (энергетические ресурсы), и места, в которых протекают разные фазы их жизни. Некоторые факторы по отношению к организмам могут рассматриваться и как одно из условий, и как ресурс. Таковы свет, влага, соли в почвенном растворе.
2. Классификации экологических факторов
Многообразие экологических факторов еще в 1840 г. русский ученый Э.А. Эверсман в работе "Естественная история Оренбургской области" разделил на абиотические и биотические.
Абиотические факторы – это комплекс условий неорганической среды, влияющих на организмы. Рельеф и климат обусловливают большое разнообразие абиотических факторов.
Биотические факторы – это совокупность влияний одних организмов на другие в процессе их жизнедеятельности (опыление растений, затенение верхними ярусами нижних, поедание одних особей другими). В широком смысле это внутри- и межвидовые отношения организмов. К биотическим факторам относятся и антропические, роль которых год от году возрастает. Антропические факторы чаще называют антропогенными. Различия между ними заключаются в том, что антропогенные факторы управляют процессами формирования человека и не имеют отношения к влиянию на другие организмы или среду.
АБИОТИЧЕСКИЕ БИОТИЧЕСКИЕ
Физические климатические – влага, свет, температура, ветер, давление, течения, продолжительность суток Влияние растений друг на друга и на другие организмы в биоценозе (прямо или опосредованно)
Физические эдафические – влагоемкость, теплообеспеченность механический состав и проницаемость почвы Влияние животных друг на друга и на другие организмы в биоценозе
Химические - состав воздуха, содержание в почве или воде элементов питания, соленость воздуха и воды, реакция рН
Антропические факторы – все виды человеческой деятельности
По действию их можно разделить на прямодействующие и косвенно-действующие (опосредованные, модифицирующие). Прямодействующие: свет, тепло, плодородие почв, влага (на растения), косвеннодействующие – они же, но через цепи питания – на животных.
Но то же тепло может быть косвеннодействующим фактором – на почвах с многолетней мерзлотой в муссонном климате летом наблюдается интенсивное таяние мерзлоты, но из-за недостаточной теплообеспеченности, корнеобитаемому слою свойственны переувлажнение и анаэробиозис, обусловливающие физиологическую недоступность для растений элементов питания; в континентальном сухом климате мерзлота в почвенном профиле, наоборот, в жаркую сухую погоду служит источником влаги и способствует оптимизации водного режима почв. Другие косвеннодействующие факторы: ветер (суровость погоды), течения (насыщ. кислородом), снежный покров (!).
Все экологические факторы имеют единицы измерения и определенный диапазон действия. В рамках этого диапазона и осуществляется жизнедеятельность организмов и биосистем.
Можно сгруппировать экологические факторы по времени (эволюционный, исторический), периодичности (периодический, непериодический), очередности (первичный, вторичный), происхождению (космический, абиотический, биотический, биологический, техногенный, фактор беспокойства, послепожарный и др.), среде возникновения (атмосферный, водный, геоморфологический, эдафический, физиологический, биоценотический, популяционный и др.).
3. Общие закономерности совместного действия факторов на организмы
а) Понятие об оптимуме
Каждый организм, каждая экосистема развивается при определенном сочетании факторов: влаги, света, тепла, наличия и состава питательных ресурсов. Все факторы действуют на организм одновременно. Для каждого организма, популяции, экосистемы существует диапазон условий среды – диапазон устойчивости (рис. 1), в рамках которого происходит жизнедеятельность объектов.
В процессе эволюции у организмов сформировались определенные требования к условиям среды. Дозы факторов, при которых организм, популя-ция или биоценоз достигают наилучшего развития и максимальной продуктивности, соответствует оптимуму условий. С изменением этой дозы в сторону уменьшения или увеличения происходит угнетение организма и чем сильнее отклонение значения факторов от оптимума, тем снижение жизнеспособности больше, вплоть до гибели организма или разрушения биоценоза. Условия, при которых жизнедеятельность максимально угнетена, но организм и биоценоз еще существуют, называются пессимальными.
ПРИМЕР. На севере лимитирующий фактор – тепло, на юге – влагообеспеченность. На Крайнем Севере самые производительные леса из лиственницы Каяндера разнотравные растут в поймах рек – здесь складывается благоприятный гидротермический режим и почвы во время паводков регулярно пополняются элементами питания. Самые низкопроизводительные леса – из той же лиственницы, но с покровом из сфагновых мхов, формируются на северных склонах гор в условиях постоянного переувлажнения и холодности почв. Уровень многолетней мерзлоты под моховым покровом не опускается ниже 30 см. В Южном Приморье оптимальные лесорастительные условия свойственны северным склонам в их средней части, а пессимальные – сухим южным склонам с выпуклой поверхностью.
Можно привести много примеров оптимумов и пессимумов у растений, животных и их сообществ по отношению к свету, влаге, теплообеспеченности, засоленности почв и др. факторам.
б) Понятие о толерантности
Для разных видов растений и животных пределы условий, в которых они себя хорошо чувствуют неодинаковы. Например, одни растения предпочитают очень высокую влажность, другие предпочитают засушливые местообитания. Одни виды птиц улетают в теплые края, другие – клесты, кедровки и птенцов выводят зимой. Чем шире количественные пределы условий среды обитания, при которых тот или иной организм, вид и экосистема могут существовать, тем выше степень их выносливости, или толерантности. Свойство видов адаптироваться к условиям среды называется экологической пластичностью (рис.2), а по амплитуде переносимых популяциями естественных колебаний фактора судят об экологической валентности вида.
Виды с узкой экологической пластичностью, т.е. способные существовать в условиях небольшого отклонения от своего оптимума, узкоспециализированные, называются стенобионтными (stenos – узкий), виды широко приспособленные, способные существовать при значительных колебаниях факторов – эврибионтные (eurys – широкий) Границы, за которыми существование невозможно, называются нижним и верхним пределами выносливости, или экологической валентности.
ПРИМЕР. Рыбы соленых и пресных водоемов – стенобионты. Трехиглая колюшка и лосось – эврибионты. Стенобионты-растения: чозения, тополь корейский – растения пойм, гигрофитные растения (калужница болотная, рогоз,), ксерофиты Приморья – сосна густоцветковая, абрикос маньчжурский, леспедеца и др. К стенобионтам можно отнести почти всех млекопитающих, в том числе и человека. Достаточно небольшого отклонения температуры воздуха (22-26°C) и воды (28-38°C) от «нормального» значения, пониженного содержания кислорода и повышенного содержания вредных веществ (хлора, паров ртути, аммиака и др.) в воздухе, чтобы вызвать резкое ухудшение его состояния.
По отношению к одному фактору вид м.б. стенобионтом, по отношению к другому – эврибионтом. В зависимости от этого выделяют прямо противоположные пары видов: стенотермный – эвритермный (по отношению к теплу), стеногидрический – эвригидрический (к влаге), стеногаленный – эвригаленный (к засоленности), стено- – эврифотный (к свету), и др.
Существуют и другие термины, характеризующие отношение видов к факторам окружающей среды. Добавление окончания «фил» (phyleo (греч.) – люблю) означает, что вид приспособился к высоким дозам фактора (термофил, гигрофил, оксифил, галлофил, хионофил), а добавление «фоб», наоборот, к низким (галлофоб, хионофоб). Вместо «термофоба» обычно употребляется «криофил», вместо «гигрофоба» – «ксерофил».
Типичные эврибионты - простейшие организмы, грибы. Из высших растений к эврибионтам можно отнести виды умеренных широт: сосну обыкновенную, лиственницу даурскую, дуб монгольский, иву Шверина, бруснику и большинство видов вересковых.
Стенобионтность вырабатывается у видов, длительное время развивающихся в относительно стабильных условиях. Чем сильнее она выражена, тем меньшим ареалом обладает вид, или его сообщество. Наиболее распространенные виды, имеют широкий диапазон толерантности ко всем факторам. Они называются космополитами. Но таких видов мало.
в) Закон Либиха, или «закон минимума», или закон ограничивающего фактора
В природе нет такого места, где бы на организм действовал один фактор. Все факторы действуют одновременно и совокупность этих действий называется констелляцией. Значения факторов не всегда равнозначны. Они могут быть все недостаточны, и тогда наблюдается общее угнетение биоты (слабое развитие растительного покрова, снижение продуктивности, изменение фракционной структуры биомассы, изменение других показателей экосистем), но чаще одни из них в достатке, даже в оптимуме, а другие – в дефиците. При этом констелляция не является простой суммой влияния факторов, т.к. степень воздействия одних факторов на организмы и популяции зависит от степени воздействия других факторов.
ПРИМЕР. При оптимальной теплообеспеченности увеличивается толерантность растений и животных к недостатку влаги и питания, а недостаток тепла сопровождается снижением потребности во влаге и повышенной потребностью в питательных элементах. Причем это наблюдается и у растений, и у животных. У растений при недостатке тепла и переувлажнении почв становятся физиологически недоступными элементы питания, и для обеспечения толерантности требуется повышенное плодородие почв. Также и у животных – чтобы усилить защитные функции организма на холоде, надо хорошо поесть. Так, всегда перед тем, как залечь в берлогу медведь накапливает подкожный жир. Реакции газообмена у рыб неодинаковы в воде разной солености. У жуков рода Blastophagus реакция на свет зависит от температуры. При температуре 25°C они ползут на свет (положительный фототропизм), при снижении ее до 20°C или увеличении до 30°C – реакция нейтральная, а при значениях ниже и выше этих пределов – прячутся.
Однако компенсаторные возможности у факторов ограничены. Нельзя ни один фактор полностью заменить другим, и если значение хотя бы одного из факторов выходит за верхний или нижний пределы выносливости компонента биоты, существование последнего становится невозможным, каковы бы благоприятны не были остальные факторы.
ПРИМЕР. Нормальное выживание пятнистого оленя в Приморье имеет место только в дубняках на южных склонах, т.к. здесь мощность снега незначительна и обеспечивает оленю достаточную кормовую базу на зимний период. Ограничивающим фактором для оленя является глубокий снег. Недостаток тепла ограничивает распространение на север большинство видов и формаций маньчжурской флоры: сосняки из сосны густоцветковой, пихта цельнолистная и ее формации распространены только в Южном Приморье. А в зоне распространения многолетней мерзлоты повсеместно господствует лиственница. Для кедрового стланика и ольховника камчатского решающими факторами распространения являются высокая влажность воздуха и условия перезимовки. Они хорошо переносят морозные зимы только при наличии мощного снежного покрова, защищающего побеги от иссушения и обморожения зимними муссонами Дальнего Востока. Эти виды образуют заросли только в прибрежных районах Охотского и Берингового морей, а в континентальных р-нах – в подгольцовом поясе на высоте не менее 1000 м/н.у.м. На ранних стадиях развития ограничивающим фактором у хвойных пород может быть избыток света. Все они, даже сосна могильная, в первые годы жизни требуют притенения.
В середине 19 века (1846 г.) немецкий агрохимик Либих вывел «закон минимума». В опыте с минеральными удобрениями он установил, что наибольшее влияние на выносливость растений оказывают те факторы, которые в данном местообитании находятся в минимуме. Он писал в 1955 г.: «Элементы, полностью отсутствующие или не находящиеся в нужном количестве, препятствуют прочим питательным соединениям произвести эффект или уменьшают их питательное действие». Это справедливо не только к элементам питания, но и к другим жизненно важным факторам. Закон Либиха применим только в условиях стационарного состояния экосистемы, т.е. когда приток вещества и энергии в систему уравновешивается их оттоком.
Фактор, уровень которого близок к пределам выносливости конкретного организма, вида и пр. компонентов биоты, называется ограничивающим. И именно к этому фактору организм приспосабливается (вырабатывает адаптации) в первую очередь. Закон ограничивающих, или лимитирующих, факторов распространяется не только на ситуацию, когда эти факторы в «минимуме», но и в «максимуме», то есть выходит за верхний предел выносливости организма (экосистемы).
В пессимальных условиях ограничивающих факторов несколько и их общее подавляющее влияние может быть выше суммарного подавляющего эффекта отдельно взятых факторов.
ПРИМЕР с южными склонами – инсоляция усиливает сухость среды, препятствует повышению плодородия почв.
Часто ограничивающим фактор бывает на одной из стадий развития вида. Как известно, наиболее уязвимы ювенильные особи и для них ограничивающих факторов м.б. несколько. В разных географических зонах и ограничивающие факторы разные: на Крайнем Севере – чаще тепло, в южных районах – влага. Разные виды по-разному реагируют на один и тот же фактор. По реакции их взрослых особей на тот или иной фактор можно построить экологический ряд (в порядке убывания или нарастания действия фактора).
ПРИМЕР экологического ряда древесных пород по теневыносливости: лиственница – береза белая – осина – ивы – липа – дуб – береза даурская – ясень – клены – ольха – ильм – граб – ель – кедр – пихта. Экологический ряд типов леса (по теплообеспечнности): лиственничник (Л.) травяный – Л. зеленомошный – Л. брусничный – Л. сфагновый (рис. 3). Экологический ряд типов леса (по увлажнению): ильмовник (или ясеневник) крупнотравно-папоротниковый – дубняк (Д.) с березой разнотравный – Д. осоковый – Д. рододендроновый осоковый – Д. марьянниково-осоковый – Д. осочковый редкопокровный (рис. 4).
В пределах популяции тоже можно выделить индивидуумы наиболее и наименее чувствительные к одному и тому же фактору. Это обусловлено сочетанием наследственных (генетических) и приобретенных (фенотипических) признаков организмов. Благодаря экологической индивидуальности в популяциях существуют разные по жизнестойкости особи. Самые жизнестойкие переживают периоды неблагоприятных условий, способствуя сохранению вида в экстремальных условиях. .
г) Правило предварения В.В. Алехина
Установил ботаник Вас. Вас. Алехин (1951). Одни и те же сообщества в одной зоне зональные, в других – экстразональные. Во втором случае за пределами северных границ ареала они занимают наиболее благоприятные для себя местообитания, за пределами южных границ – наименее благоприятные. Это особенно проявляется на северных и южных склонах лесной зоны. На холодных северных склонах в Магаданской области растут лиственничные редины со сфагновым покровом, а на теплых южных – лиственничные мохово-лишайниковые редколесья (Чукотка) и каменноберезовые разнотравные леса (Северное Охотоморье). В юго-западных районах Приморья северные склоны заняты влажными хвойно-широколиственными лесами, а южные – сухими дубняками с редкими вкраплениями сосняков из сосны густоцветковой (могильной) и абрикосниками, на самой окраине – переходящими в лесостепные сообщества.
Выявленная закономерность имеет большое значение, т.к. позволяет достаточно точно описать растительность еще не изученных территорий и реконструировать его прежний облик в местах, где он был уничтожен.
д) Принцип стациальной верности Г.Я. Бей-Биенко
Стация – место обитания популяции вида, которому присущи экологические условия, соответствующие требованиям вида. Каждый вид имеет свой набор стаций. В пределах одной зоны и временного периода вид занимает одни стации. С переходом в другую зону или с переходом в другую возрастную стадию вид может менять стации. Правило зональной смены местообитаний установил энтомолог Григ. Яковл. Бей-Биенко (1966). В северных районах многие виды насекомых обычно ведут себя как гигрофобы, занимая более сухие, с разреженным покровом участки, а в южных они же – гигрофиты, селятся во влажных, тенистых местах, с густым растительным покровом (перелетная саранча). Другой пример – муравьи-лазии (Lasius niger, L. flavus) на влажных лугах заселяют кочки, а на сухих – в степи, предпочитают более влажные стации обитания. Зональная смена местообитаний характерна и для растений.
Так, кедровый стланик в Южном Приморье растет только в подгольцовом поясе на высоте от 1000-1100 м до 1400-1600 м над ур.м., с продвижением к северу он спускается вниз и образует в долинных лиственничниках густой подлесок. Севернее 60° с.ш. – на Южной Чукотке и Охотском побережье, восточные и юго-восточные склоны и подножия гор и холмов заняты сплошными зарослями кедрового стланика.
е) Правило зональной смены ярусов М.С. Гилярова
В разных зонах одни и те же виды занимают и разные ярусы. При продвижении на север они закономерно из верхних ярусов перебираются в нижние, более теплые, а некоторые – и в почву. Это установил почв. зоолог Меркур. Серг. Гиляров.
ПРИМЕР. Личинки жука-оленя (Lucanus cervus) в лесной зоне развиваются в разлагающемся валеже и пнях, а в степной – обитают в гнилых корнях на глубине до 1 м.
Кроме зональной (пространственной) смены местообитаний происходят и временные смены: сезонная (в течения месяца и даже одних суток при колебаниях микроклимата – в периоды засух или тайфунов, насекомые и грызуны то прячутся под защиту крон кустарников и деревьев, то выбираются на открытые места) и годичная (при отклонении погодных условий от среднегодовых норм). Благодаря смене местообитаний виды сохраняют свой экологический статус в постоянно меняющихся условиях. В то же время при успешном расселении они занимают новые местообитания, и даже меняют их. В результате начинает меняться экология и физиология особей и популяций. В таких случаях смена стаций становится одним из ведущих факторов эволюции.
Принцип стациальной верности и противоположный ему принцип зональной и вертикальной смены местообитаний указывает на сложные связи организмов со средой. Изучение их очень важно для познания экологии видов, как основы для охраны редких и полезных и борьбы с вредными видами.
Экологические факторы среды
Окружающая организм среда - это природные тела и явления, с которыми она находится в прямых или косвенных отношениях. Условия среды, способные оказывать прямое или косвенное влияние на живые организмы, называются экологическими факторами. Существует несколько классификаций экологических факторов среды. Наиболее простой и ставшей классической является классификация, по которой экологические факторы среды делятся на две категории: абиотические факторы (факторы неживой природы) и биотические факторы (факторы живой природы).
К абиотическим факторам относятся климатические - свет, температура, влага, движение воздуха, давление; эдафогенные (почвенные) - механический состав, влагоемкость, воздухопроницаемость, плотность; орографические - рельеф, высота над уровнем моря, экспозиция склона; химические - газовый состав воздуха, солевой состав среды, концентрация, кислотность и состав почвенных растворов.
К биотическим факторам относятся фитогенные (растительные организмы), зоогенные (животные), микробиогенные (вирусы, простейшие, бактерии, риккетсии) и антропогенные (деятельность человека).
Оригинальную классификацию экологических факторов предложил А.С. Мончадский (1962), исходя из того, что приспособительные реакции организмов к тем или иным факторам среды определяются степенью постоянства этих факторов. Это:
- первичные периодические факторы (температура, свет), зависящие от периодичности вращения Земли и смены времен года;
- вторичные периодические факторы (влажность, осадки, динамика растительной пищи, содержание растворенных газов в воде, внутривидовые взаимодействия) как следствие первичных периодических;
- непериодические факторы (эдафические факторы, взаимодействие между разными видами, антропогенные воздействия, почвенно-грунтовые факторы), не имеющие правильной периодичности.
Воздействие химического компонента абиотического фактора на живые организмы выражается в существовании некоторых верхних и нижних границ амплитуды допустимых колебаний отдельных факторов (температура, соленость, рН, газовый состав и др.), то есть определенный режим существования. Чем шире пределы какого-либо фактора, тем выше устойчивость, или, как ее называют, толерантность, данного организма.
Лимитирующим фактором развития растений является элемент, концентрация которого лежит в минимуме. Это определяется законом, называемым законом минимума Ю.Либиха (1840). Либих, химик-органик, один из основоположников агрохимии, выдвинул теорию минерального питания растений. Урожай культур часто лимитируется элементами питания, присутствующими не в избытке, такими как СО2 и Н2О, а теми, которые требуются в ничтожных количествах. Например: бор - необходимый элемент питания растений, но его мало содержится в почве. Когда его запасы исчерпываются в результате возделывания одной культуры, то рост растений прекращается, если даже другие элементы находятся в изобилии. Закон Либиха строго применим только в условиях стационарного состояния. Необходимо учитывать и взаимодействие факторов. Так, высокая концентрация или доступность одного вещества или действие другого (не минимального) фактора может изменять скорость потребления элемента питания, содержащегося в минимальном количестве. Иногда организм способен заменять (частично) дефицитный элемент другим, более доступным и химически близким ему. Так, некоторым растениям нужно меньше цинка, если они растут на свету, а моллюски, обитающие в местах, где есть много стронция, заменяют им частично кальций при построении раковины.
Экологические факторы среды могут оказывать на живые организмы воздействия разного рода:
1) раздражители, вызывающие приспособительные изменения физиологических и биохимических функций (например, повышение температуры воздуха ведет к увеличению потоотделения у млекопитающих и к охлаждению тела);
2) ограничители, обусловливающие невозможность существования в данных условиях (например, недостаток влаги в засушливых районах препятствует проникновению туда многих организмов);
3) модификаторы, вызывающие анатомические и морфологические изменения организмов (например, запыленность окружающей среды в индустриальных районах некоторых стран привела к образованию черных бабочек березовых пядениц, сохранивших свою светлую окраску в сельских местностях);
4) сигналы, свидетельствующие об изменении других факторов среды.
В характере воздействия экологических факторов на организм выявлен ряд общих закономерностей.
Закон оптимума - положительное или отрицательное влияние фактора на организмы - зависит от силы его воздействия. Недостаточное или избыточное действие фактора одинаково отрицательно сказывается на жизнедеятельности особей. Благоприятная сила воздействия экологического фактора называется зоной оптимума. Одни виды выносят колебания в широких пределах, другие - в узких. Широкая пластичность к какому-либо фактору обозначается прибавлением частицы «эври», узкая - «стено» (эвритермные, стенотермные - по отношению к температуре, эвриотопные и стенотопные - по отношению к местам обитания).
Неоднозначность действия фактора на разные функции. Каждый фактор неоднозначно влияет на разные функции организма. Оптимум для одних процессов может быть неблагоприятным для других. Например, температура воздуха более 40°С у холоднокровных животных увеличивает интенсивность обменных процессов в организме, но тормозит двигательную активность, что приводит к тепловому оцепенению.
Взаимодействие факторов. Оптимальная зона и пределы выносливости организмов по отношению к какому-либо из факторов среды могут смещаться в зависимости от того, с какой силой и в каком сочетании действуют одновременно другие факторы. Так, жару легче переносить в сухом, а не во влажном воздухе. Угроза замерзания выше при морозе с сильным ветром, нежели в безветренную погоду. Вместе с тем взаимная компенсация действия факторов среды имеет определенные пределы и полностью заменить один из них другим нельзя. Дефицит тепла в полярных областях нельзя восполнить ни обилием влаги, ни круглосуточной освещенностью в летнее время. Для каждого вида животных необходим свой набор экологических факторов.
Воздействие химического компонента абиотического фактора на живые организмы. Абиотические факторы создают условия обитания растительных и животных организмов и оказывают прямое или косвенное влияние на жизнедеятельность последних. К абиотическим факторам относят элементы неорганической природы: материнская порода почвы, химический состав и влажность последней, солнечный свет, теплота, вода и ее химический состав, воздух, его состав и влажность, барометрическое и водное давление, естественный радиационный фон и др. Химическими компонентами абиотических факторов являются питательные вещества, следы элементов, концентрация углекислого газа и кислорода, ядовитые вещества, кислотность (рН) среды.
Влияние рН на выживаемость организмов-гидробионтов. Большинство организмов не выносят колебаний величины рН. Обмен веществ у них функционирует лишь в среде со строго определенным режимом кислотности-щелочности. Концентрация водородных ионов во многом зависит от карбонатной системы, которая является важной для всей гидросферы и описывается сложной системой равновесий, устанавливающихся при растворении в природных пресных водах свободного СО2, по реакции:
СО2 + Н2О + Н2СО3+ Н+ + НС .
Именно эта реакция является причиной того, что рН пресных природных вод редко бывает теоретически нейтральной, то есть равной 7. Чаще всего рН чистой воды колеблется от 6,9 до 5,6. В природе приведенное выше равновесие в чистом виде не существует, так как на природные воды оказывает действие многочисленные факторы: температура, давление, содержание в атмосфере кислорода, аммиака, диоксида и триоксида серы, азота, состав пород по которым протекает река или расположено озеро. рН сравнительно легко измерить, поэтому его изучили во многих водных местообитаниях. Если рН не приближается к крайнему значению (от 6,5 до 8,5), то сообщества способны компенсировать изменения этого фактора и толерантность сообщества к диапазону рН, встречающемуся в природе, весьма значительна. Так как изменение рН пропорционально изменению количества СО2, рН может служить индикатором скорости общего метаболизма сообщества (фотосинтеза и дыхания). В воде с низким рН содержится мало биогенных элементов, в связи с чем продуктивность здесь мала. рН сказывается и на распределении водных организмов. Растения растут в воде с рН ниже 7,5 (Isoetes и Sparganium), от 7,7 до 8,8 (Potamogeton и Elodea canadensis), от 8,4 до 9,0 (Typha angustifolia). Развитие сфагновых мхов стимулируют кислые воды торфяников, в которых очень редки моллюски, ввиду отсутствия извести, зато часто встречаются личинки двукрылых из рода Chaoborus. Рыбы выносят рН в пределах от 5,0 до 9,0, но некоторые виды способны приспосабливаться к значению рН до 3,7. При рН > 10 вода гибельна для всех рыб. Максимальная продуктивность вод приходится на рН между 6,5 и 8,5. В таблице 1.1 указаны основные величины рН для пресноводных рыб Европы.
Аэробные и анаэробные организмы. Аэробными организмами называются такие организмы, которые способны жить и развиваться только при наличии в среде свободного кислорода, используемого ими в качестве окислителя. К аэробным организмам принадлежат все растения, большинство простейших и многоклеточных животных, почти все грибы, то есть подавляющее большинство известных видов живых существ. У животных жизнь в отсутствие кислорода (анаэробиоз) встречается как вторичное приспособление. Аэробные организмы осуществляют биологическое окисление главным образом посредством клеточного дыхания. В связи с образованием при окислении токсичных продуктов неполного восстановления кислорода, аэробные организмы обладают рядом ферментов (каталаза, супероксиддисмутаза), обеспечивающих их разложение и отсутствующих или слабо функционирующих у облигатных анаэробов, для которых кислород оказывается вследствие этого токсичным. Наиболее разнообразна дыхательная цепь у бактерий, обладающих не только цитохромоксидазой, но и другими терминальными оксидазами. Особое место среди аэробных организмов занимают организмы, способные к фотосинтезу, - цианобактерии, водоросли, сосудистые растения. Выделяемый этими организмами кислород обеспечивает развитие всех остальных аэробных организмов. Организмы, способные развиваться при низкой концентрации кислорода (_ 1 мг/л), называются микроаэрофилами.
Анаэробные организмы способны жить и развиваться при отсутствии в среде свободного кислорода. Термин «анаэробы» ввел Луи Пастер, открывший в 1861 году бактерии маслянокислого брожения. Распространены они главным образом среди прокариот. Метаболизм их обусловлен необходимостью использовать иные окислители, чем кислород. Многие анаэробные организмы, использующие органические вещества (все эукариоты, получающие энергию в результате гликолиза), осуществляют различные типы брожения, при которых образуются восстановленные соединения - спирты, жирные кислоты. Другие анаэробные организмы - денитрифицирующие (часть из них восстанавливает окисное железо), сульфатвоссстанавливающие, метанообразующие бактерии - используют неорганические окислители: нитрат, соединения серы, СО2. Анаэробные бактерии разделяются на группы маслянокислых и т.д. в соответствии с основным продуктом обмена. Особую группу анаэробов составляют фототрофные бактерии. По отношению к О2 анаэробные бактерии делятся на облигатных, которые неспособны использовать его в обмене, и факультативных (например, денитрифицирующие), которые могут переходить от анаэробиоза к росту в среде с О2. На единицу биомассы анаэробные организмы образуют много восстановленных соединений, основными продуцентами которых в биосфере они и являются. Последовательность образования восстановленных продуктов (N2, Fe2+, H2S, CH4), наблюдаемая при переходе к анаэробиозу, например в донных отложениях, определяется энергетическим выходом соответствующих реакций. Анаэробные организмы развиваются в условиях, когда О2 полностью используется аэробными организмами, например в сточных водах, илах.
Таблица 1.1
Значения рН для пресноводных рыб Европы (по Р.Дажо, 1975)
рН
Характер воздействия на пресноводных рыб
3,0 - 3,5
Гибельно для рыб; выживают некоторые растения и беспозвоночные
3,5 - 4,0
Гибельно для лососевых рыб; плотва, окунь, щука могут выжить после акклиматизации
4,0 - 4,5
Гибельно для многих рыб, размножается только щука
4,5 - 5,0
Опасно для икры лососевых рыб
5,0 - 9,0
Область, пригодная для жизни
9,0 - 9,5
Опасно для окуня и лососевых рыб в случае длительного воздействия
9,5 - 10,0
Вредно для развития некоторых видов, гибельно для лососевых при большой продолжительности воздействия
10,0 - 10,5
Переносится плотвой в течение очень короткого времени
10,5 - 11,5
Смертельно для всех рыб
Влияние количества растворенного кислорода на видовой состав и численность гидробионтов. Степень насыщенности воды кислородом обратно пропорциональна ее температуре. Концентрация растворенного О2 в поверхностных водах изменяется от 0 до 14 мг/л и подвержена значительным сезонным и суточным колебаниям, которые в основном зависят от соотношения интенсивности процессов его продуцирования и потребления. В случае высокой интенсивности фотосинтеза вода может быть значительно пересыщена О2 (20 мг/л и выше). В водной среде кислород является ограничивающим фактором. О2 составляет в атмосфере 21% (по объему) и около 35% от всех газов, растворенных в воде. Растворимость его в морской воде составляет 80% от растворимости в пресной воде. Распределение кислорода в водоеме зависит от температуры, перемещения слоев воды, а также от характера и количества живущих в нем организмов. Выносливость водных животных к низкому содержанию кислорода у разных видов неодинакова. Среди рыб установлено четыре группы по их отношению к количеству растворенного кислорода:
1) 7 - 11 мг / л - форель, гольян, подкаменщик;
2) 5 - 7 мг / л - хариус, пескарь, голавль, налим;
3) 4 мг / л - плотва, ерш;
4) 0,5 мг / л - карп, линь.
Некоторые виды организмов приспособились к сезонным ритмам в потреблении О2, связанными с условиями жизни. Так, у рачка Gammarus Linnaeus выявили, что интенсивность дыхательных процессов возрастает вместе с температурой и изменяется в течение года. У животных, живущих в местах, бедных кислородом (прибрежный ил, донный ил), обнаружены дыхательные пигменты, служащие резервом кислорода. Эти виды способны выживать, переходя к замедленной жизни, к анаэробиозу или благодаря тому, что у них имеется d-гемоглобин, обладающий большим сродством к кислороду (дафнии, олигохеты, полихеты, некоторые пластинчатожаберные моллюски). Другие водные беспозвоночные поднимаются за воздухом на поверхность. Это имаго жуков-плавунцов и водолюбов, гладыши, водяные скорпионы и водяные клопы, прудовики и катушка (брюхоногие моллюски). Некоторые жуки окружают себя воздушным пузырьком, удерживаемым волоском, а насекомые могут использовать воздух из воздухоносных пазух водяных растений.
Зависимость живых организмов от концентрации минеральных солей в среде. В естественных водах концентрация минеральных солей весьма различна. В пресной воде максимальное содержание растворенных веществ равно 0,5 г/л. В морской воде среднее содержание растворенных солей 35 г/л. В солоноватых водах этот показатель очень изменчив. Соленость обычно выражается в промилле (‰) и является одной из основных характеристик водных масс, распределения морских организмов, элементов морских течений и т.д. Особую роль она играет в формировании биологической продуктивности морей и океанов, так как многие организмы очень восприимчивы к незначительным ее изменениям. Многие виды животных являются целиком морскими (многие виды рыб, беспозвоночных и млекопитающих).
В солоноватых водах обитают виды, способные переносить повышенную соленость. В эструариях, где соленость ниже 3 ‰, морская фауна беднее. В Балийском море, соленость которого составляет 4 ‰, встречаются балянусы, кольчецы, а также коловратки и гидроиды.
Водные организмы подразделяются на пресноводные и морские по степени солености воды, в которой они обитают. Сравнительно немногие растения и животные могут выдерживать большие колебания солености. Такие виды обычно обитают в эструариях рек или в соленых маршах и носят названия эвригалинных. К ним относятся многие обитатели литорали (соленость около 35 ‰), эструариев рек, солоноватоводных (5 - 35 ‰) и ультрасоленых (50 - 250 ‰), а также проходные рыбы, нерестящиеся в пресной воде (< 5 ‰). Наиболее удивительный пример - рачок Artemia salina, способный существовать при солености от 20 до 250 ‰ и даже переносить полное временное опреснение. Способность существовать в водах с различной соленостью обеспечивается механизмами осморегуляции, которую поддерживают относительно постоянные концентрации осмотически активных веществ в жидкостях внутренней среды.
По отношению к солености среды животные делятся на стеногалинных и эвригалинных. Стеногалинные животные - животные, не выдерживающие значительные изменения солености среды. Это подавляющее число обитателей морских и пресных водоемов. Эвригалинные животные способны жить при широком диапазоне колебаний солености. Например, улитка Hydrobia ulvae способна выживать при изменении концентрации NaCl от 50 до 1600 ммоль/мл. К ним относятся также медуза Aurelia aurita, съедобная мидия Mutilus edulis, краб Carcinus maenas, аппендикулярия Oikopleura dioica.
Устойчивость по отношению к изменению солености меняется с температурой. Например, гидроид Cordylophora caspia лучше переносит низкую соленость при невысокой температуре; десятиногие раки переходят в малосоленые воды, когда температура становится слишком высокой. Виды, обитающие в солоноватых водах, отличаются от морских форм размерами. Так, краб Carcinus maenas в Балтийском море имеет маленькие размеры, а в эструариях и лагунах - крупные. То же можно сказать и о съедобной мидии Mutilus edulis, имеющей в Балтийском море средний размер 4 см, в Белом море - 10 - 12 см, а в Японском - 14 - 16 см в соответствии с увеличением солености. Кроме того, от солености среды зависит и строение эвригалинных видов. Рачок артемия при солености 122 ‰имеет размер 10 мм, при 20 ‰ достигает 24 - 32 мм. Одновременно изменяется форма тела, придатков и окраска.