Реферат Автоматизированный корреляционно-регрессионный анализ взаимосвязи статистических данных в среде
Работа добавлена на сайт bukvasha.net: 2015-10-28Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего
от 25%

Подписываем
договор
ВСЕРОССИЙСКИЙ ЗАОЧНЫЙ ФИНАНСОВО-ЭКОНОМИЧЕСКИЙ ИНСТИТУТ
КАФЕДРА СТАТИСТИКИ
О Т Ч Е Т
о результатах выполнения
компьютерной лабораторной работы
Автоматизированный корреляционно-регрессионный анализ взаимосвязи статистических данных в среде MS Excel
Вариант № 65
Выполнил: ст. III курса гр. 3
Широких Е.Б.
Проверил: доц. Левчегов О.Н.
Липецк 2011 г.
1. Постановка задачи статистического исследования
Корреляционно-регрессионный анализ взаимосвязи признаков является составной частью проводимого статистического исследования деятельности 30-ти предприятий и частично использует результаты ЛР-1.
В ЛР-2 изучается взаимосвязь между факторным признаком Среднегодовая стоимость основных производственных фондов (признак Х) и результативным признаком Выпуск продукции (признак Y), значениями которых являются исходные данные ЛР-1 после исключения из них аномальных наблюдений.
-
Исходные данные
Номер предприятия
Среднегодовая стоимость основных производственных фондов, млн.руб.
Выпуск продукции, млн. руб.
5
1205,00
945,00
23
1299,50
1255,50
27
1407,50
1080,00
1
1448,00
1390,50
8
1502,00
1485,00
32
1529,00
1566,00
22
1637,00
1336,50
19
1677,50
1282,50
2
1704,50
1525,50
3
1758,50
1701,00
13
1772,00
1809,00
26
1812,50
1660,50
9
1839,50
1741,50
4
1853,00
1890,00
28
1893,50
1687,50
17
1907,00
1728,00
6
1947,50
1620,00
14
1947,50
1971,00
25
1947,50
1755,00
7
2001,50
2187,00
31
2082,50
1755,00
18
2109,50
2052,00
10
2123,00
2173,50
20
2136,50
1755,00
24
2177,00
2011,50
29
2190,50
1849,50
15
2231,00
2389,50
12
2325,50
2295,00
21
2379,50
2362,50
16
2555,00
2565,00
В процессе статистического исследования необходимо решить ряд задач.
Установить наличие статистической связи между факторным признаком Х и результативным признаком Y графическим методом.
Установить наличие корреляционной связи между признаками Х и Y методом аналитической группировки.
Оценить тесноту связи признаков Х и Y на основе эмпирического корреляционного отношения η.
Построить однофакторную линейную регрессионную модель связи признаков Х и Y, используя инструмент Регрессия надстройки Пакет анализа, и оценить тесноту связи признаков Х и Y на основе линейного коэффициента корреляции r.
Определить адекватность и практическую пригодность построенной линейной регрессионной модели, оценив:
а) значимость и доверительные интервалы коэффициентов а0, а1;
б) индекс детерминации R2 и его значимость;
в) точность регрессионной модели.
Дать экономическую интерпретацию:
а) коэффициента регрессии а1;
б) коэффициента эластичности КЭ;
в) остаточных величин εi.
Найти наиболее адекватное нелинейное уравнение регрессии с помощью средств инструмента Мастер диаграмм.
2. Выводы по результатам выполнения лабораторной работы
Задача 1
. Установление наличия статистической связи между факторным признаком Х и результативным признаком Y графическим методом.
Статистическая связь является разновидностью стохастической (случайной) связи, при которой с изменением факторного признака X закономерным образом изменяется какой–либо из обобщающих статистических показателей распределения результативного признака Y.
Вывод:
Точечный график связи признаков (диаграмма рассеяния, полученная в ЛР-1 после удаления аномальных наблюдений) позволяет сделать вывод, что имеет место статистическая связь. Предположительный вид связи – линейная прямая.
Задача 2. Установление наличия корреляционной связи между признаками Х и Y методом аналитической группировки.
Корреляционная связь – важнейший частный случай стохастической статистической связи, когда под воздействием вариации факторного признака Х закономерно изменяются от группы к группе средние групповые значения
Вывод:
Результаты выполнения аналитической группировки предприятий по факторному признаку Среднегодовая стоимость основных производственных фондов даны в табл. 2.2 Рабочего файла, которая показывает, что с увеличением значений факторного признака Х закономерно
увеличиваются средние групповые значения результативного признака
Задача 3. Оценка тесноты связи признаков Х и Y на основе эмпирического корреляционного отношения.
Для анализа тесноты связи между факторным и результативным признаками рассчитывается показатель η – эмпирическое корреляционное отношение, задаваемое формулой
где
Для качественной оценки тесноты связи на основе показателя эмпирического корреляционного отношения служит шкала Чэддока:
Значение η | 0,1 – 0,3 | 0,3 – 0,5 | 0,5 – 0,7 | 0,7 – 0,9 | 0,9 – 0,99 |
Сила связи | Слабая | Умеренная | Заметная | Тесная | Весьма тесная |
Результаты выполненных расчетов представлены в табл. 2.4 Рабочего файла.
Вывод:
Значение коэффициента η =0,56, что в соответствии с оценочнойшкалой Чэддока говорит о заметной
степени связи изучаемых признаков.
Задача 4. Построение однофакторной линейной регрессионной модели связи изучаемых признаков с помощью инструмента Регрессия надстройки Пакет анализа и оценка тесноты связи на основе линейного коэффициента корреляции r.
4.1. Построение регрессионной модели заключается в нахождении аналитического выражения связи между факторным признаком X и результативным признаком Y.
Инструмент Регрессия на основе исходных данных (xi , yi), производит расчет параметров а0 и а1 уравнения однофакторной линейной регрессии
Примечание. В результате работы инструмента Регрессия получены четыре результативные таблицы (начиная с заданной ячейки А75). Эти таблицы выводятся в Рабочий файл без нумерации, поэтому необходимо присвоить им номера табл.2.5 – табл.2.8 в соответствии с их порядком.
Вывод:
Рассчитанные в табл.2.7 (ячейки В91 и В92) коэффициенты а0 и а1 позволяют построить линейную регрессионную модель связи изучаемых признаков в виде уравнения
4.2. В случае линейности функции связи для оценки тесноты связи признаков X и Y, устанавливаемой по построенной модели, используется линейный коэффициент корреляции r.
Значение коэффициента корреляции r приводится в табл.2.5 в ячейке В78 (термин "Множественный R").
Вывод:
Значение коэффициента корреляции r =0,913 , что в соответствии с оценочной шкалой Чэддока говорит о весьма тесной степени связи изучаемых признаков.
Задача 5
. Анализ адекватности и практической пригодности построенной линейной регрессионной модели.
Анализ адекватности регрессионной модели преследует цель оценить, насколько построенная теоретическая модель взаимосвязи признаков отражает фактическую зависимость между этими признаками, и тем самым оценить практическую пригодность синтезированной модели связи.
Оценка соответствия построенной регрессионной модели исходным (фактическим) значениям признаков X и Y выполняется в 4 этапа:
оценка статистической значимости коэффициентов уравнения а0, а1 и определение их доверительных интервалов для заданного уровня надежности;
определение практической пригодности построенной модели на основе оценок линейного коэффициента корреляции r и индекса детерминации R2;
проверка значимости уравнения регрессии в целом по F-критерию Фишера;
оценка погрешности регрессионной модели.
Оценка статистической значимости коэффициентов уравнения а0, а1 и определение их доверительных интервалов
Так как коэффициенты уравнения а0 , а1 рассчитывались, исходя из значений признаков только для 30-ти пар (xi , yi), то полученные значения коэффициентов являются лишь приближенными оценками фактических параметров связи а0 , а1. Поэтому необходимо:
проверить значения коэффициентов на неслучайность (т.е. узнать, насколько они типичны для всей генеральной совокупности предприятий отрасли);
определить (с заданной доверительной вероятностью 0,95 и 0,683) пределы, в которых могут находиться значения а0, а1 для генеральной совокупности предприятий.
Для анализа коэффициентов а0, а1 линейного уравнения регрессии используется табл.2.7, в которой:
– значения коэффициентов а0, а1 приведены в ячейках В91 и В92 соответственно;
– рассчитанный уровень значимости коэффициентов уравнения приведен в ячейках Е91 и Е92;
– доверительные интервалы коэффициентов с уровнем надежностиР=0,95 и Р=0,683 указаны в диапазоне ячеек F91:I92.
5.1.1. Определение значимости коэффициентов уравнения
Уровень значимости
– это величина α=1–Р, где Р – заданный уровень надежности (доверительная вероятность).
Режим работы инструмента Регрессия использует по умолчанию уровень надежности Р=0,95. Для этого уровня надежности уровень значимости равен α = 1 – 0,95 = 0,05. Этот уровень значимости считается заданным.
В инструменте Регрессия надстройки Пакет анализа для каждого из коэффициентов а0 и а1 вычисляется уровень его значимости αр, который указан в результативной таблице (табл.2.7 термин "Р-значение"). Если рассчитанный для коэффициентов а0, а1 уровень значимости αр, меньше заданного уровня значимости α= 0,05, то этот коэффициент признается неслучайным (т.е. типичным для генеральной совокупности), в противном случае – случайным.
Примечание. В случае, если признается случайным свободный член а0, то уравнение регрессии целесообразно построить заново без свободного члена а0. В этом случае в диалоговом окне Регрессия необходимо задать те же самые параметры за исключением лишь того, что следует активизировать флажок Константа-ноль (это означает, что модель будет строиться при условии а0=0). В лабораторной работе такой шаг не предусмотрен.
Если незначимым (случайным) является коэффициент регрессии а1, то взаимосвязь между признаками X и Y в принципе не может аппроксимироваться линейной моделью.
Вывод:
Для свободного члена а0 уравнения регрессии рассчитанный уровень значимости есть αр =0,1. Так как он больше заданного уровня значимости α=0,05, то коэффициент а0 признается случайным.
Для коэффициента регрессии а1 рассчитанный уровень значимости есть αр =
5.1.2. Зависимость доверительных интервалов коэффициентов уравнения от заданного уровня надежности
Доверительные интервалы коэффициентов а0, а1 построенного уравнения регрессии при уровнях надежности Р=0,95 и Р=0,683 представлены в табл.2.7, на основе которой формируется табл.2.9.
Таблица 2.9
Границы доверительных интервалов коэффициентов уравнения
Коэффициенты | Границы доверительных интервалов | |||
Для уровня надежности Р=0,95 | Для уровня надежности Р=0,683 | |||
нижняя | верхняя | нижняя | верхняя | |
а0 | -1622,1 | 164,8 | -1173,04 | -284,3 |
а1 | 0,90 | 1,28 | 1,00 | 1,2 |
Вывод:
В генеральной совокупности предприятий значение коэффициента а0 следует ожидать с надежностью Р=0,95 в пределах-1622,1
Определение практической пригодности построенной регрессионной модели.
Практическую пригодность построенной модели
близостьк единице свидетельствует о хорошей аппроксимации исходных (фактических) данных с помощью построенной линейной функции связи
;
близостьк нулю означает, что связь между фактическими данными Х и Y нельзя аппроксимировать как построенной, так и любой другой линейной моделью, и, следовательно, для моделирования связи следует использовать какую-либо подходящую нелинейную модель.
Пригодность построенной регрессионной модели для практического использования можно оценить и по величине индекса детерминации R2, показывающего, какая часть общей вариации признака Y объясняется в построенной модели вариацией фактора X.
В основе такой оценки лежит равенство R = r (имеющее место для линейных моделей связи), а также шкала Чэддока, устанавливающая качественную характеристику тесноты связи в зависимости от величины r.
Согласно шкале Чэддока высокая степень тесноты связи признаков достигается лишь при
При недостаточно тесной связи признаков X, Y (слабой, умеренной, заметной) имеет место неравенство
С учетом вышесказанного, практическая пригодность построенной модели связи
неравенство R2 >0,5 позволяет считать, что построенная модель пригодна для практического применения, т.к. в ней достигается высокая степень тесноты связи признаков X и Y, при которой более 50% вариации признака Y объясняется влиянием фактора Х;
неравенствоозначает, что построенная модель связи практического значения не имеет ввиду недостаточной тесноты связи между признаками X и Y, при которой менее 50% вариации признака Y объясняется влиянием фактора Х, и, следовательно, фактор Х влияет на вариацию Y в значительно меньшей степени, чем другие (неучтенные в модели) факторы.
Значение индекса детерминации R2 приводится в табл.2.5 в ячейке В79 (термин "R - квадрат").
Вывод:
Значение линейного коэффициента корреляции r и значение индекса детерминации R2 согласно табл. 2.5 равны: r =0,91, R2 =0,83. Поскольку
Общая оценка адекватности регрессионной модели по F-критерию Фишера
Адекватность построенной регрессионной модели фактическим данным (xi, yi) устанавливается по критерию Р.Фишера, оценивающему статистическую значимость (неслучайность) индекса детерминации R2.
Рассчитанная для уравнения регрессии оценка значимости R2 приведена в табл.2.6 в ячейке F86 (термин "Значимость F"). Если она меньше заданного уровня значимости α=0,05, то величина R2 признается неслучайной и, следовательно, построенное уравнение регрессии
Вывод:
Рассчитанный уровень значимости αр индекса детерминации R2 есть αр=
Оценка погрешности регрессионной модели
Погрешность регрессионной модели можно оценить по величине стандартной ошибки
Погрешность регрессионной модели выражается в процентах и рассчитывается как величина
В адекватных моделях погрешность не должна превышать 12%-15%.
Значение
Вывод:
Погрешность линейной регрессионной модели составляет
Задача 6. Дать экономическую интерпретацию:
1) коэффициента регрессии а1;
3) остаточных величин
2) коэффициента эластичности КЭ;
6.1. Экономическая интерпретация коэффициента регрессии а1
В случае линейного уравнения регрессии
Вывод:
Коэффициент регрессии а1 =1,09 показывает, что при увеличении факторного признака Среднегодовая стоимость основных производственных фондов на 1 млн руб. значение результативного признака Выпуск продукции увеличивается в среднем на 1,09 млн. руб.
6.2. Экономическая интерпретация коэффициента эластичности.
С целью расширения возможностей экономического анализа явления используется коэффициент эластичности
Средние значения
Расчет коэффициента эластичности:
Вывод:
Значение коэффициента эластичности Кэ=1,17 показывает, что при увеличении факторного признака Среднегодовая стоимость основных производственных фондов на 1% значение результативного признака Выпуск продукции увеличивается в среднем на 1,17 %.
6.3. Экономическая интерпретация остаточных величин εi
Каждый их остатков
Анализируя остатки, можно сделать ряд практических выводов, касающихся выпуска продукции на рассматриваемых предприятиях отрасли.
Значения остатков
Экономический интерес представляют наибольшие расхождения между фактическим объемом выпускаемой продукции yi и ожидаемым усредненным объемом
Вывод:
Согласно таблице остатков максимальное превышение ожидаемого среднего объема выпускаемой продукции
Задача 7. Нахождение наиболее адекватного нелинейного уравнения регрессии с помощью средств инструмента Мастер диаграмм.
Уравнения регрессии и их графики построены для 3-х видов нелинейной зависимости между признаками и представлены на диаграмме 2.1 Рабочего файла.
Уравнения регрессии и соответствующие им индексы детерминации R2 приведены в табл.2.10 (при заполнении данной таблицы коэффициенты уравнений необходимо указывать не в компьютерном формате, а в общепринятой десятичной форме чисел).
Таблица 2.10
Регрессионные модели связи
Вид уравнения | Уравнение регрессии | Индекс детерминации R2 |
Полином 2-го порядка | | 0,835 |
Полином 3-го порядка | | 0,8381 |
Степенная функция | | 0,8371 |
Выбор наиболее адекватного уравнения регрессии определяется максимальным значением индекса детерминации R2: чем ближе значение R2 к единице, тем более точно регрессионная модель соответствует фактическим данным.
Вывод:
Максимальное значение индекса детерминации R2 =0,8381.Следовательно, наиболее адекватное исходным данным нелинейное уравнение регрессии имеет вид
ПРИЛОЖЕНИЕ
Результативные
таблицы и графики
Исходные данные | ||
Номер предприятия | Среднегодовая стоимость основных производственных фондов, млн.руб. | Выпуск продукции, млн. руб. |
1 | 3608,00 | 3450,50 |
2 | 4244,50 | 3785,50 |
3 | 4378,50 | 4221,00 |
4 | 4613,00 | 4690,00 |
5 | 3005,00 | 2345,00 |
6 | 4847,50 | 4020,00 |
7 | 4981,50 | 5427,00 |
8 | 3742,00 | 3685,00 |
9 | 4579,50 | 4321,50 |
10 | 5283,00 | 5393,50 |
12 | 5785,50 | 5695,00 |
13 | 4412,00 | 4489,00 |
14 | 4847,50 | 4891,00 |
15 | 5551,00 | 5929,50 |
16 | 6355,00 | 6365,00 |
17 | 4747,00 | 4288,00 |
18 | 5249,50 | 5092,00 |
19 | 4177,50 | 3182,50 |
20 | 5316,50 | 4355,00 |
21 | 5919,50 | 5862,50 |
22 | 4077,00 | 3316,50 |
23 | 3239,50 | 3115,50 |
24 | 5417,00 | 4991,50 |
25 | 4847,50 | 4355,00 |
26 | 4512,50 | 4120,50 |
27 | 3507,50 | 2680,00 |
28 | 4713,50 | 4187,50 |
29 | 5450,50 | 4589,50 |
31 | 5182,50 | 4355,00 |
32 | 3809,00 | 3886,00 |
Таблица 2.2 | ||||||
Зависимость выпуска продукции от среднегодовой стоимости основных фондов | ||||||
Номер группы | Группы предприятий по стоимости основеных фондов | Число предприятий | Выпуск продукции | |||
Всего | В среднем на одно предприятие | |||||
1 | 3005-3675 | 4 | 16147,00 | 4036,75 | ||
2 | 3675-4345 | 5 | 19798,50 | 3959,70 | ||
3 | 4345-5015 | 11 | 55543,00 | 5049,36 | ||
4 | 5015-5685 | 7 | 26766,50 | 3823,79 | ||
5 | 5685-6355 | 3 | 12830,50 | 4276,83 | ||
Итого | | 30 | 131085,50 | 4369,52 |
Таблица 2.3 | |||
Показатели внутригрупповой вариации | |||
Номер группы | Группы предприятий по стоимости основеных фондов | Число предприятий | Внутригрупповая дисперсия |
1 | 3005-3675 | 4 | 216874,81 |
2 | 3675-4345 | 5 | 994044,16 |
3 | 4345-5015 | 11 | 780900,50 |
4 | 5015-5685 | 7 | 561903,70 |
5 | 5685-6355 | 3 | 85540,39 |
Итого | | 30 | |
Таблица 2.4 | |||
Показатели дисперсии и эмпирического корреляционного отношения | |||
Общая дисперсия | Средняя из внутригрупповых дисперсия | Межгрупповая дисперсия | Эмпирическое корреляционное отношение |
903163,1081 | 620585,7564 | 282577,3517 | 0,559352496 |
Выходные таблицы | |||||
ВЫВОД ИТОГОВ | |||||
Регрессионная статистика | |||||
Множественный R | 0,91318826 | ||||
R-квадрат | 0,833912798 | ||||
Нормированный R-квадрат | 0,827981112 | ||||
Стандартная ошибка | 400,8969854 | ||||
Наблюдения | 30 |
Дисперсионный анализ | |||||
| df | SS | MS | F | Значимость F |
Регрессия | 1 | 22594778,24 | 22594778,24 | 140,5861384 | 1,97601E-12 |
Остаток | 28 | 4500115,002 | 160718,3929 | ||
Итого | 29 | 27094893,24 | | | |
| Коэффициенты | Стандартная ошибка | t-статистика | P-Значение | Нижние 95% |
Y-пересечение | -728,6655802 | 436,1611477 | -1,670633856 | 0,10593656 | -1622,101178 |
Переменная X 1 | 1,089355181 | 0,09187519 | 11,85690257 | 1,97601E-12 | 0,901157387 |
| Верхние 95% | Нижние 68,3% | Верхние 68,3% |
Y-пересечение | 164,7700179 | -1173,045872 | -284,2852881 |
Переменная X 1 | 1,277552975 | 0,995748668 | 1,182961694 |
ВЫВОД ОСТАТКА | ||
Наблюдение | Предсказанное Y | Остатки |
1 | 3201,727913 | 248,7720873 |
2 | 3895,102485 | -109,6024854 |
3 | 4041,07608 | 179,9239204 |
4 | 4296,52987 | 393,4701305 |
5 | 2544,846739 | -199,8467386 |
6 | 4551,983659 | -531,9836595 |
7 | 4697,957254 | 729,0427463 |
8 | 3347,701507 | 337,2984931 |
9 | 4260,036471 | 61,46352902 |
10 | 5026,397841 | 367,1021592 |
11 | 5573,798819 | 121,2011808 |
12 | 4077,569478 | 411,4305218 |
13 | 4551,983659 | 339,0163405 |
14 | 5318,345029 | 611,1549707 |
15 | 6194,186595 | 170,8134052 |
16 | 4442,503464 | -154,5034638 |
17 | 4989,904442 | 102,0955578 |
18 | 3822,115688 | -639,6156882 |
19 | 5062,891239 | -707,8912393 |
20 | 5719,772413 | 142,7275865 |
21 | 3712,635493 | -396,1354926 |
22 | 2800,300529 | 315,1994715 |
23 | 5172,371435 | -180,871435 |
24 | 4551,983659 | -196,9836595 |
25 | 4187,049674 | -66,54967386 |
26 | 3092,247717 | -412,247717 |
27 | 4406,010065 | -218,5100652 |
28 | 5208,864834 | -619,3648336 |
29 | 4916,917645 | -561,9176451 |
30 | 3420,688304 | 465,3116959 |
Рис. 1