Реферат Механические характеристики асинхронного двигателя
Работа добавлена на сайт bukvasha.net: 2015-10-28Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
от 25%
договор
Федеральное агентство по образованию
Государственное образовательное учреждение высшего профессионального образования
Петрозаводский государственный университет
Кольский филиал
Кафедра «Высоковольтной электроэнергетики и электротехники»
Дисциплина “_Электромеханика_ ”
Механические характеристики асинхронного двигателя (АД).
Устройство а
синхронной машины.
Контрольная работа
студента __2___ курса
(группа АВЭЭ - /06/3,5 )
заочного отделения
Физико-энергетического факультета
специальность:140201– «Высоковольтные электроэнергетика и электротехника»
Ваховского Владимира Александровича
преподаватель –
проф., докт. техн. наук А.И. Ракаев
Апатиты
2008 г
Содержание:
Механические характеристики асинхронного двигателя (АД).
1. Введение.
2. Асинхронные машины.
3. Уравнение механической характеристики асинхронного двигателя.
4. Линеаризация механической характеристики асинхронного двигателя.
5. Механические характеристики асинхронных двигателей при симметричных режимах
6. Тормозные режимы асинхронных двигателей
7. Технические реализации. Применения
8.
Устройство а
синхронной машины.
9. Принцип действия
Асинхронные машины.
10. Список литературы
Механические характеристики асинхронного двигателя (АД).
1. Введение.
Электроприводы переменного тока широко применяются в промышленности, транспорте, строительной индустрии и других отраслях народного хозяйства. Их преимущественное распространение обусловлено: высокой надежностью машины переменного тока из-за отсутствия коллектора, простотой управления нерегулируемыми приводами, поскольку большинство из них непосредственно включается в сеть, низкой стоимостью электрических машин и простыми требованиями к их обслуживанию и правилами эксплуатации.
В зависимости от типа используемого двигателя различают не только приводы переменного и постоянного тока, но и асинхронные, синхронные, шаговые и другие разновидности приводов. Однако не следует думать, что приводы переменного тока везде и всюду могут применяться вместо приводов постоянного тока. Для каждого вида привода имеются сложившиеся области перспективного использования. Причем трудно однозначно и определенно перечислить наперед все факторы, которые определяют выбор рода тока для привода. Наряду с традиционными приводами, построенными на базе асинхронных и синхронных машин, в последние десятилетия применяют приводы переменного тока с универсальными и шаговыми двигателями, двигателями двойного питания и с электромагнитной редукцией скорости.
2. Асинхронные машины.
Принцип действия асинхронной машины в самом общем виде состоит в следующем: один из элементов машины - статор используется для создания движущегося с определенной скоростью магнитного поля, а в замкнутых проводящих пассивных контурах другого элемента-ротора наводятся ЭДС, вызывающие протекание токов и образование сил (моментов) при их взаимодействии с магнитным полем. Все эти явления имеют место при несинхронном-асинхронном движении ротора относительно поля, что и дало машинам такого типа название - асинхронные.
Статор обычно выполнен в виде нескольких расположенных в пазах катушек, а ротор в виде «беличьей клетки» (короткозамкнутый ротор) или в виде нескольких катушек (фазный ротор), которые соединены между собой, выведены на кольца, расположенные на валу, и с помощью скользящих по ним щеток могут быть замкнуты на внешние резисторы или другие цепи.
Несмотря на простоту физических явлений и материализующих их конструктивов, полное математическое описание процессов в асинхронной машине весьма сложно:
во-первых, все напряжения, токи, потокосцепления -переменные, т.е. характеризуются частотой, амплитудой, фазой или соответствующими векторными величинами;
во-вторых, взаимодействуют движущиеся контуры, взаимное расположение которых изменяется в пространстве;
в-третьих, магнитный поток нелинейно связан с намагничивающим током (проявляется насыщение магнитной цепи), активные сопротивления роторной цепи зависят от частоты (эффект вытеснения тока), сопротивления всех цепей зависят от температуры и т.п.
Рассмотрим самую простую модель асинхронной машины, пригодную для объяснения основных явлений в асинхронном электроприводе.
Механические характеристики двигателя полностью определяют качество работы электромеханической системы в установившемся режиме и ее производительность. Они также влияют и на динамические режимы электропривода, характеризуя избыточный динамический момент, определяющий ускорение или замедление двигателя
3. Уравнение механической характеристики асинхронного двигателя
В современной практике проектирования используются программы, учитывающие при расчете механических характеристик намагничивание магнитной системы машины Но при этом теряется наглядность в их исследовании. Поэтому все дальнейшие зависимости будут найдены при выполнении этого основного допущения.
Подведенная к двигателю из сети электрическая мощность расходуется на покрытие потерь в контуре намагничивания pμ, в меди статора pM1, и остаток ее преобразуется в электромагнитную мощность. Таким образом,
(4-11)
откуда
(4-12)
В свою очередь,
(4-13)
где ω0 = 2πf1/p - число пар полюсов статора машины.
После незначительных преобразований, найдем
(4-14)
Следовательно, зависимость M = f(s) является сложной функцией от скольжения. Исследуем ее на экстремум, взяв производную
(4-15)
Приравняв числитель выражения (4-15) нулю, найдем значение критического скольжения sK, при котором зависимость М = f(s) имеет максимум:
(4-16)
Физически уменьшение М
при s < sK и s > sK объясняется следующим. При s < sK уменьшение скольжения сопряжено с уменьшением тока и момента двигателя, а при s > sK, хотя и происходит увеличение тока двигателя, но его активная составляющая, обусловливающая электромагнитный момент, не растет, а уменьшается, что также приводит к уменьшению момента, развиваемого двигателем.
Положительный знак sK соответствует двигательному, а отрицательный - генераторному режиму работы машины.
Следует иметь в виду, что, как у машины постоянного тока, относительная величина r1 уменьшается при увеличении мощности машин и уже для двигателей мощностью 100 кВт составляет 10-15% величины x1 + x2'. Поэтому формулу (4-16) можно использовать в упрощенной форме, пренебрегая r1
(4-17)
где xК.З - индуктивное приведенное сопротивление короткого замыкания.
Этого нельзя делать для машин средней и особенно малой мощности, у которых сопротивление r1 соизмеримо с xК.З.
Используя формулы (4-14) и (4-16), можно получить иную запись механической характеристики асинхронного двигателя, если найти значения его критических моментов в двигательном МК.Д и генераторном МК.Г режимах работы:
(4-18)
Отношение критических моментов
(4-19)
Здесь принято часто используемое обозначение:
(4-20)
Формула (4-19) показывает, что значение критического момента машины в генераторном режиме может быть существенно больше, чем в двигательном режиме (см. рис. 4-8).
Для практического использования удобнее иное, чем в формуле (4-14), выражение механической характеристики асинхронного двигателя. Найдем его, используя формулы (4-14), (4-17) и (4-20):
(4-21)
Если пренебречь влиянием активного сопротивления статора, то ε = 0, и формула (4-21) приобретает такой вид (при МК.Д = МК.Г = МК):
(4-22)
Впервые выражение (4-22) получил М. Kloss [18], поэтому его называют формулой Клосса.
Формулы (4-21) или (4-22) удобнее для расчетов, чем (4-14), поскольку они не требуют знания параметров двигателя. В этом случае все расчеты производятся по данным каталога. Ввиду того, что значение sK в каталогах не указано, его приходится определять на основе других сведений, например, величины перегрузочной способности машины МК/МНОМ = λМ. Тогда из формулы (4-21) получим:
(4-23)
откуда, решая квадратное уравнение, найдем
(4-24)
где γ = λМ + (1 - λМ)ε.
В выражении (4-24) следует брать перед корнем знак плюс, поскольку другое значение sK противоречит физическому смыслу.
Приближенное решение уравнения (4-24) можно получить при коэффициенте ε = 0, но лучше определить его значение. Наиболее достоверные результаты будут получены, если, располагая параметрами машины, величину ε определять из формулы (4-20), a sK - из выражения (4-16). Для асинхронных двигателей с фазным ротором выражения (4-14) и (4-21) дают более достоверные результаты, так как в этих машинах менее заметны влияния насыщения стали и вытеснения тока в обмотках ротора (скинэффект).
4. Линеаризация механической характеристики асинхронного двигателя
На рабочем участке механической характеристики значение скольжения s много меньше критического sK. Поэтому в уравнении (4-21) пренебрежем слагаемым ssK-1 и положим ε = 0. Тогда получим
(4-25)
где
Таким образом, выражение (4-25) представляет собой линеаризованную часть механической характеристики двигателя. Им можно пользоваться при вариациях скольжения в пределах 0 < s < (1,2 - 1,5) sНОМ.
Рис. 4-5. Линеаризованные механические характеристики асинхронных двигателей
Для получения искусственных характеристик достаточно записать два уравнения прямых при одинаковых значениях скольжения si (рис. 4-5):
где индексами «и» и «е» отмечены искусственная и естественная характеристики, откуда легко найти
(4-26)
так как
(4-27)
По формуле (4-26) можно построить начальные участки любой механической характеристики. При этом скольжение не должно выходить за указанные пределы.
Если в цепь ротора введено суммарное сопротивление R2 НОМ, то при s = 1 в роторе будет протекать ток, соответствующий номинальному моменту МНОМ. Тогда выражение (4-26) примет вид
(4-28)
Последнее выражение позволяет записать для любой искусственной или естественной характеристики следующее соотношение:
(4-29)
где ρП - относительная величина полного сопротивления, включенного в роторную цепь машины ρП = ρ2 + ρДОБ; s - скольжение на соответствующей механической характеристике.
Следует иметь в виду, что при R2 = R2 НОМ номинальное значение скольжения sН НОМ =1 на данной искусственной характеристике.
5 Механические характеристики асинхронных двигателей при симметричных режимах
Характеристики двигателя при изменении напряжения питающей сети или сопротивлений в цепи статора
.
Симметричными называют такие режимы работы асинхронных двигателей (АД), при которых питающая сеть симметрична по значению и фазовому сдвигу напряжений, одинаковы активные или реактивные сопротивления, вводимые в электрические цепи всех фаз и симметричны их внутренние параметры (число витков в фазах, угловые сдвиги пазов и другие факторы).
Прежде всего рассмотрим изменения в сети. Из соотношения (4-9) следует, что ток I2' пропорционален приложенному напряжению, а момент - [см. выражение (4-14)] его квадрату. Это позволяет построить механические характеристики двигателя при любых напряжениях (рис. 4-6). Очевидно формула (4-16) подтверждает постоянство критического скольжения sK. Уже при снижении напряжения до 0,7UНОМ критический момент составляет
Рис. 4-6. Механические характеристики асинхронного двигателя при различных напряжениях питания.
всего 49% MK номинального режима. Практически понижение напряжения оказывается еще большим при пуске двигателя из-за большого пускового тока. Все это приводит к тому, что при длинных линиях питания или для крупных машин при их мощностях, соизмеримых с мощностью трансформаторных подстанций, необходимо выполнить специальные расчеты, подтверждающие возможность нормального пуска АД и его работы с пониженным напряжением.
По тем же причинам установлен специальный ГОСТ 13109-87 на качество электрической энергии, который предусматривает послеаварийное изменение напряжения в промышленной сети только в пределах ±10% номинального его значения.
Особенно опасно снижение напряжения для приводов, которые по условиям эксплуатации должны запускаться под нагрузкой (приводы транспортеров, грузоподъемных устройств, конверторов и многих других механизмов). Например, при пуске без нагрузки (вхолостую) статический момент транспортера не превышает (0,2-0,3)МНОМ. Если же привод транспортера был отключен во время работы при полной нагрузке, то при повторном пуске с пониженным напряжением он должен будет преодолеть МС ≈ МНОМ.
Для ограничения пусковых токов крупных асинхронных машин или получения плавного пуска асинхронного привода применяют включение активных или индуктивных сопротивлений в цепи статора, которые выводятся в конце пуска (рис. 4-7). Особенностью таких схем является зависимость напряжения на зажимах двигателя от величины тока [2, 16].
Включение активного сопротивления хотя и несколько повышает коэффициент мощности привода в пусковых режимах, но в то же время увеличивает потери энергии, по сравнению с «реакторным» пуском.
Рис. 4-7. Механические характеристики асинхронного двигателя при номинальном и пониженном напряжении или активном (rДОБ) и реактивном (xДОБ) добавочных сопротивлениях в статоре.
В последние десятилетия для часто включаемых и отключаемых двигателей большой мощности используют «частотный» пуск, что более экономично. Для этой цели устанавливается специальный преобразователь, плавно изменяющий частоту питания двигателя при пуске, т. е. величину ω0. Одновременно с этим снижается напряжение, что ограничивает и пусковой ток.
Характеристики асинхронного двигателя при включении активных сопротивлений в цепь ротора.
Асинхронные двигатели с фазным ротором широко используются в приводах подъемно-транспортных и металлургических установок, мощные двигатели применяют в приводах вентиляторов, аэродинамических труб и насосов. Благодаря включению активных сопротивлений в цепь ротора, можно изменять критическое скольжение такого АД, вид его механической характеристики, пусковой ток и момент.
Использование в приводах насосов и вентиляторов двигателей с фазным ротором позволяет экономично регулировать их производительность, что приносит большой хозяйственный эффект. Напомним, что критический момент не зависит от активного сопротивления, введенного в роторную цепь, поэтому выбором rДОБ можно так изменять механические характеристики АД, что максимальный момент привод будет иметь при пуске (ω = 0), либо даже в режиме противовключения sK > 1 (рис. 4-8).
Увеличение rДОБ приводит к возрастанию активной составляющей тока ротора I2a' = I2'cosψ2, так как
(4-30)
где R2' = r2' + r'ДОБ - полное приведенное активное сопротивление вторичной цепи машины.
По этой же причине двигатели с фазным ротором, в отличие от короткозамкнутых, имеют большие пусковые моменты при меньших токах. Это свойство таких машин служит основным условием их преимущественного использования в приводах с тяжелыми режимами пуска (краны, металлургические установки, ротационные машины и другие энергоемкие механизмы). Следует иметь в виду, что чрезмерное увеличение rДОБ приводит к резкому уменьшению активной составляющей тока I2'. Тогда пусковой момент двигателя МП становится меньше статического момента при трогании МТР. В результате пуск привода будет невозможным.
Искусственную механическую характеристику можно рассчитать, используя формулу (4-14) или (4-18), (4-20), (4-24) и (4-27). Методику расчета искусственных характеристик АД с фазным ротором можно упростить, базируясь на следующих соотношениях. Запишем выражения для равных значений моментов Мi на естественной и любой искусственной характеристике на основании формулы (4-21):
(4-31)
Значение ε не зависит от величины активной составляющей сопротивления во вторичной цепи машины, поэтому оно остается неизменным для естественной и искусственной механических характеристик. Следовательно, из формулы (4-31) имеем
(4-32)
Заданными величинами можно считать: критические скольжения на искусственной и естественной характеристиках sK.И и sK.Е и скольжение на естественной характеристике sei. Тогда из выражения (4-32) получим
(4-33)
Таким образом, основой упрощенного расчета служит естественная механическая характеристика двигателя. Как было указано ранее для машин с фазным ротором, она может быть получена приближенно по выражению (4-22) и более точно по (4-21). Часть параметров машин, необходимых для этих расчетов, указывается в каталогах или справочниках [16, 59], а часть - может быть определена по вышеприведенным формулам.
Рис. 4-8. Механические характеристики двигателя с фазным ротором
6. Тормозные режимы асинхронных двигателей
Тормозные режимы для многих приводов с асинхронными машинами имеют более важное значение, чем режимы пуска в отношении предъявляемых к ним требований надежности и безотказности в осуществлении. Часто требуется точная остановка в заданном положении или торможение привода в течение определенного времени.
Для асинхронных двигателей используют режимы: генераторного торможения с отдачей энергии в сеть; противовключения; динамического торможения с различными системами возбуждения статора постоянным (выпрямленным) током, когда машина работает генератором, рассеивая энергию во вторичной цепи; динамического конденсаторного или магнитного торможения с самовозбуждением. Поэтому тормозные режимы по способу возбуждения магнитного поля статора можно разделить на две группы: независимого возбуждения, осуществляемого от сети переменного или постоянного тока (рекуперативного, противовключения и динамического торможения) и с самовозбуждением, осуществляемым в результате обмена энергией с конденсаторной батареей или при замыкании статора двигателя накоротко, когда магнитный поток создается ЭДС самоиндукции. По определению Л.П. Петрова последний вид будем называть магнитным торможением.
Все перечисленные режимы применяют для машин как с фазным, так и с короткозамкнутым ротором.
В связи с использованием мощных силовых полупроводниковых приборов (тиристоров и транзисторов) появились новые схемы реализации типовых тормозных режимов асинхронных приводов.
Повышение эффективности торможения можно достичь применением комбинированных способов его реализации. Следует особо подчеркнуть, что большинство комбинированных торможений являются полностью управляемыми. Это еще более повышает их эффективность.
Наиболее эффективными являются противовключение и конденсаторно-динамическое торможение (КДТ). Последний способ имеет много схемных решений. Его рекомендуют использовать для приводов с большими приведенными моментами инерции, например превышающими двухкратный момент инерции двигателя.
Для малоинерционных приводов можно применять конденсаторно-магнитное торможение (КМТ). Не менее эффективным будет и магнитно-динамическое торможение (МДТ). Рациональны для отдельных приводов и другие комбинированные виды двух и даже трехступенчатого торможения: противовключения - динамического торможения (ПДТ), конденсаторного торможения и противовключения (КТП) и др.
Таким образом, реализация современных способов торможения АД в существенной степени зависит от опыта и знаний разработчика электропривода. Поэтому рассмотрим детально режимы торможения.
Торможение с отдачей энергии в сеть. Обратимость асинхронного двигателя, как и других машин, использующих принцип электромагнитной индукции (максвелловского типа), позволяет ему работать в генераторном режиме. Если на валу двигателя отсутствует нагрузка, то энергия, потребляемая из сети, расходуется на покрытие потерь в статоре, а также потерь в стали и механических потерь в роторе. Прикладывая к валу машины внешний момент, действующий в направлении вращения ротора, можно достичь синхронной скорости. При этом потери в роторе покрываются уже внешним источником энергии, а из сети будет потребляться только энергия, идущая на покрытие потерь в статоре. Дальнейшее увеличение скорости выше синхронной приводит к тому, что асинхронная машина переходит в генераторный режим.
При работе в этом режиме проводники статора пересекаются магнитным полем в прежнем направлении, а проводники ротора - в противоположном, поэтому ЭДС ротора Е2 меняет знак, т. е. Е2's = (- s)Е2' ≈ - Е2's. Ток в роторе соответственно будет равен
(4-34)
Рис. 4-13. Векторная диаграмма асинхронного двигателя, работающего в генераторном режиме
Из выражения (4-34) видно, что при переходе АД в генераторный режим изменяет направление только активная составляющая тока ротора, так как вращающий момент на валу изменил свое направление по сравнению с имевшим место в двигательном режиме. Это иллюстрирует векторная диаграмма на рис. 4-13. Здесь угол φ1 > π/2, что подтверждает изменение причины появления тока I1 в виде ЭДС E1 (а не напряжения сети U1, как в двигательном режиме), хотя направление тока намагничивания Iμ сохранилось прежним. Перемена знака у активной составляющей тока I'2a приводит к тому, что и электромагнитная мощность становится отрицательной, т. е. отдается в сеть, так как s < 0:
Знак же реактивной мощности вторичного контура сохраняется неизменным независимо от режима работы машины, что следует из выражения
(4-35)
Благодаря наличию активных статических моментов торможение используется в подъемных установках (рис. 4-14,а), в транспортных приводах (рис. 4-14,б). Различие в этих тормозных режимах заключается в том, что в первом случае (рис. 4-14,а) двигатель при опускании большого груза переключается на его спуск (ω < 0) и последовательно проходит режим противовключения (второй квадрант), реверса (третий квадрант) и выход на режим генераторного торможения с рекуперацией энергии в сеть (точка 3
в четвертом квадранте при |ω| > |ω0|). Предельное значение момента груза МС не должно превосходить МНОМ. При движении транспорта «под уклон» потенциальная энергия перемещаемого груза начинает способствовать движению и создает внешний движущий момент, прикладываемый к валу двигателя. Таким образом, в этом случае, благодаря увеличению скорости привода (ω > ω0) и изменению знака ЭДС Е2, двигатель непосредственно, без переключения обмоток статора, переходит в генераторный режим с отдачей энергии в сеть (точка 2
на рис. 4-14,б).
Рис. 4-14. Механические характеристики асинхронного двигателя при активном статическом моменте: а - спуск тяжелого груза; б - работа транспортного средства «под уклон»
При наличии реактивного статического момента генераторное торможение с рекуперацией энергии в сеть можно получить в асинхронных двигателях с переключением числа полюсов или в приводах с частотным, частотно-токовым и векторным регулированием скорости вращения АД.
В первом случае (рис. 4-15,а), переключая статор машины с меньшего числа полюсов на большее, уменьшается синхронная скорость ω02 < ω01 и происходит торможение с отдачей энергии в сеть в течение всего периода, пока двигатель работает во втором квадранте.
При частотном регулировании скорости, уменьшая частоту питания статора от основной f1 до f2 < f1 и f3 < f2, постепенно переключают двигатель с одной механической характеристики на другую (рис. 4-15,б). Привод работает в тормозном режиме с отдачей энергии в сеть, пока его рабочая точка перемещается по участкам механических характеристик, расположенных во втором квадранте. Изменяя плавно и автоматически частоту питания двигателя, можно получить тормозной режим привода с малоизменяющимся моментом торможения. Однако при этом определенным образом нужно регулировать и напряжение питания .
Рис. 4-15. Механические характеристики асинхронного двигателя в режиме генераторного торможения при реактивном статическом моменте: а - переключение числа пар полюсов; б - частотное регулирование скорости
Торможение противовключением. Этот вид торможения возникает при вращении ротора двигателя под действием статического момента в направлении, противоположном вращению поля статора. При наличии реактивного момента длительность торможения мала, после чего машина из тормозного вновь переходит в двигательный режим, (рис. 4-16,а). Первоначально двигатель работал в точке 1
двигательного режима, а затем после переключения двух фаз обмотки статора меняется направление вращения магнитного поля машины и ее электромагнитный момент (точка 2). Движение привода замедляется до точки О, а затем совершается реверс ротора и разгон двигателя в противоположном направлении до установившегося движения в точке 3
.
Для двигателей с фазным ротором при наличии большого добавочного сопротивления возможна полная остановка привода с тормозным моментом MТР (точка 5
на рис. 4-16,а).
При наличии активного момента (рис. 4-16,б), если меняется направление вращения магнитного поля, как в предыдущем случае, двигатель также изменяет режим работы, т. е. имеет место торможение противовключением - второй квадрант, двигательный режим с реверсом направления вращения ротора - третий квадрант и новый режим - генераторный с отдачей энергии в сеть - четвертый квадрант, где лежит точка установившегося длительного движения 3
.
Для двигателей с фазным ротором при активном статическом моменте режим противовключения можно получить и без переключения фаз статора, только введением больших добавочных сопротивлений в ротор (рис. 4-16,б). Тогда машина в двигательном режиме из точки 1 переводится в точку 4
при введении добавочного сопротивления rД, и далее она изменяет свое движение по искусственной механической характеристике, переходя в четвертый квадрант. Точка 5 соответствует длительному установившемуся движению асинхронного двигателя в режиме противовключения.
Рис. 4-16. Схема включения и механические характеристики асинхронного двигателя: а - в режиме противовключения при реактивном статическом моменте; б - то же, при активном статическом моменте
Режим торможения противовключением часто используется в подъемно-транспортных установках. Переключение фаз статора, без введения добавочного сопротивления используется только в асинхронных двигателях с короткозамкнутым ротором ввиду того, что начальные значения токов в точке 2
(рис. 4-16) незначительно больше пускового, который составляет (5-6)IНОМ. Для двигателей с фазным ротором такие пики тока вообще недопустимы. Недостатком тормозных характеристик противовключения является их большая крутизна и значительные потери энергии, которая полностью превращается в теплоту, рассеиваемую во вторичной цепи двигателя. Вследствие большой крутизны механических характеристик возможны большие колебания скорости привода при незначительных изменениях нагрузки.
Если известен момент МС, при котором необходимо осуществить торможение, то нетрудно рассчитать значение скольжения в этой точке по формуле (4-25), а затем по формуле (4-29) определить добавочное сопротивление.
Электродинамическое (динамическое) торможение. Если отключить статор АД от сети, то магнитный поток остаточного намагничивания формирует незначительную ЭДС и ток в роторе.
При независимом возбуждении получают неподвижный поток статора, который индуктирует в обмотках вращающегося ротора ЭДС и ток.
Рис. 4-17. Схемы включения обмоток статора асинхронного двигателя в сеть постоянного (выпрямленного) напряжения
Для включения в сеть постоянного (выпрямленного) тока обмоток статора применяют различные схемы их соединения, часть из которых изображена на рис. 4-17.
Для анализа режима динамического торможения удобнее заменить МДС FП, создаваемую постоянным током, переменной эквивалентной МДС F~, формируемой совместно обмотками статора и ротора, как в обычном асинхронном двигателе. Тогда режим синхронного генератора заменяется эквивалентным режимом асинхронной машины. При такой замене должно соблюдаться равенство: FП = F~.
Рис. 4-18. Схемы соединения начала (Н) и конца (К) обмоток статора «в звезду» (а),определение направлений МДС обмоток статора (б), геометрическое сложение МДС (в)
Взаимодействие малых величин магнитного потока и тока в роторе не способно создать большой электромагнитный момент. Поэтому необходимо найти способы существенного увеличения магнитного потока. Это можно сделать, подключая статор машины в режиме динамического торможения к источнику постоянного или выпрямленного напряжения. Можно также создать схему самовозбуждения двигателя подключением к его обмотке статора конденсаторов. В результате получим режимы динамического торможения асинхронной машины с независимым возбуждением и самовозбуждением
Определение МДС постоянного тока для схемы на рис. 4-17,а поясняет рис. 4-18.
При трехфазном включении обмотки статора в сеть переменного тока необходимо определить максимум МДС машины, равный [18]:
(4-36)
где I1 - действующее значение переменного тока; ω - число витков обмотки одной фазы статора.
Вначале рассмотрим питание обмотки статора постоянным током. Если при работе машины в двигательном режиме ее скольжение и намагничивающий ток изменяются мало, то в режиме динамического торможения скольжение ротора изменяется в широких пределах. Следовательно, с изменением скорости меняется ЭДС ротора, ток в роторе и создаваемая им МДС, которая оказывает существенное влияние на результирующую МДС.
Рис. 4-19. Векторная диаграмма асинхронной машины в режиме динамического торможения
Очевидно, результирующий намагничивающий ток, приведенный к статору, будет равен
Пользуясь векторной диаграммой (рис. 4-19), запишем следующие соотношения для токов:
(4-37)
Принимая значение ЭДС в роторе машины, как и прежде, равной Е2 при угловой скорости вращения ротора ω0, при иных скоростях имеем
где
Соответственно индуктивное сопротивление ротора
где х2 - индуктивное сопротивление ротора при частоте ω0.
Теперь для вторичного контура машины можно записать
где
После приведения ЭДС Е2 к параметрам первичной цепи будем иметь Е1 = Е2' и тогда
(4-38)
Подставляя выражения (4-38) в формулу (4-37), получаем:
(4-39)
Решая уравнение (4-39) относительно тока I2', находим
(4-40)
Значение электромагнитного момента машины определяется потерями в ее вторичной цепи, а именно:
(4-41)
Исследуя это выражение на экстремум, несложно получить критическую относительную скорость ротора νKP, при которой имеется максимум момента:
(4-42)
(4-43)
На основании формул (4-41) - (4-43) можно получить следующее выражение для механической характеристики АД:
(4-44)
Выражение (4-44) подобно формуле Клосса, что упрощает его понимание. Анализ формул (4-40) - (4-44) и физических явлений, характерных для динамического торможения АД, позволяет сделать следующие выводы.
1. В режиме динамического торможения свойства механических характеристик асинхронной машины подобны свойствам аналогичных характеристик двигательного режима, т. е. критический момент не зависит от активного сопротивления вторичного контура, а критическая скорость νKP так же, как и sKP в двигательном режиме, пропорциональна r2'.
2. Параметр xμ и ток I1 могут существенно отличаться от аналогичных значений двигательного режима, поскольку зависят от насыщения магнитной цепи статора.
3. Ток статора машины в двигательном режиме является функцией скольжения ротора, а при динамическом торможении он постоянен.
4. Результирующий магнитный поток при динамическом торможении и малой скорости ротора увеличивается, так как при этом уменьшается размагничивающее действие реакции ротора, а в двигательном режиме он остается примерно постоянным.
Рис. 4-20. Механические характеристики асинхронного двигателя при динамическом торможении и различных значениях тока возбуждения или добавочных сопротивлениях в цепи ротора
На рис. 4-20 представлены характеристики, из которых 1 и 2
получены при двух значениях тока в статоре I11 < I12 и неизменном сопротивлении r21, а характеристики 3
и 4
найдены при тех же токах, но ином значении r22 > r21. Для сравнения представлена механическая характеристика машины, работающей в двигательном режиме. Если возможно изменить активное сопротивление в цепи ротора, то можно получить характеристики с примерно постоянным моментом в широком диапазоне изменения скорости привода.
Реактивное сопротивление контура намагничивания xμ определяется по универсальной характеристике холостого хода машины или экспериментальным данным. В последнем случае, без учета насыщения магнитной цепи, величина xμ находится по формуле:
где U0, I0 - фазное напряжение и ток при холостом ходе машины.
Более точно зависимость xμ = f(Iμ) может быть найдена следующим образом. Если к асинхронной машине, ротор которой вращается посторонним двигателем с синхронной скоростью, будет подводиться изменяющееся по величине фазное напряжение, то оно соответствует ЭДС E1. Поэтому, измеряя ток Iμ, легко рассчитать зависимость xμ = E1Iμ-1, которая будет учитывать насыщение магнитной системы машины. Построение механической характеристики в этом случае ведется по точкам. При этом задаются значения MKP, νKP и вычисляют по формулам (4-42) и (4-43) величину r2' и ток I1. Затем находят νi, изменяя Iμi от нуля до I1 при соответствующих значениях xμi, по формуле:
(4-45)
Выражение (4-45) получено после операций с формулами (4-37) - (4-38). По формуле (4-41) можно рассчитать механическую характеристику, учитывающую влияние насыщения магнитной цепи машины.
Этот вид торможения применяется в подъемно-транспортных и в станочных приводах, питаемых от нерегулируемой по частоте сети переменного тока в частотно-управляемых приводах.
Конденсаторное торможение асинхронных двигателей в последние десятилетия стало применяться в станочных приводах. Возможность такого режима была установлена еще в 1895 г. М. Лебланом, но в 20-40-е годы XX века этот вид торможения считался нерациональным. Только в 1944 г. А.Т. Голован и И.Н. Барбаш показали перспективность его использования. Однако лишь в конце 50-х годов, благодаря трудам Л.П. Петрова [40], были достигнуты практические результаты в использовании как конденсаторного, так и других видов комбинированного торможения. Это стало возможным ввиду снижения стоимости и габаритов конденсаторов и разработке новых схем, обеспечивающих интенсивное самовозбуждение асинхронных машин в широком диапазоне изменения их скорости вращения. В настоящее время применяются разнообразные схемы реализации конденсаторного торможения.
Рис. 4-21. Зависимость самовозбуждения асинхронной машины при конденсаторном торможении
Принцип самовозбуждения АД поясняется изображениями, приведенными на рис. 4-21. При отключении машин с вращающимся ротором от сети и подключении к статору батареи конденсаторов (рис. 4-26,а) за счет остаточной ЭДС Е0 начинается заряд конденсаторов с током Iμ0 (рис. 4-21). Этот ток повышает ЭДС машины до E1i, что, в свою очередь, повышает ток заряда конденсатора до величины Iμi, и далее процесс продолжался бы так, как указано на рисунке до точки 1 (при неизменной скорости вращения поля двигателя), где E1i = E1 и Iμi = Iμ.
Согласно эквивалентной схеме (рис. 4-22) ЭДС E1 будет равна
(4-46)
где φ = fXf0-1 и f0 - номинальная частота в цепи.
Полагая в начале самовозбуждения ток в роторе равным нулю и I1 ≈ Iμ, можно найти начальную относительную частоту самовозбуждения φНАЧ. Тогда из формулы (4-46) найдем
(4-47)
где
и xμ, x1, xС - реактивные составляющие сопротивлений схемы замещения (рис. 4-22) при частоте сети (50 Гц).
Рис. 4-22. Эквивалентная схема асинхронной машины при конденсаторном возбуждении
Пренебрегая значениями В
и x12 по сравнению с xμ2 и решая биквадратное уравнение (4-47), получаем:
или (4-48)
Рис. 4-23. Статические характеристики режима конденсаторного самовозбуждения асинхронной машины Ф - магнитный поток; I1, I2' , Iμ - ток в статоре, ток в роторе (приведенное значение), ток намагничивания соответственно; φ - частота свободных колебаний тока в статоре; ω - угловая скорость ротора; s - скольжение; М
- электромагнитный момент
Таким образом, начальная частота процесса самовозбуждения асинхронного генератора примерно равна собственной частоте колебательного контура ненасыщенной машины. Это же иллюстрируют и кривые на рис. 4-23 (в относительных единицах). Они позволяют сделать следующие выводы.
1. Режим ограничен по угловой скорости ротора значениями ωНАЧ, где начинается самовозбуждение машины и ωК, где этот процесс заканчивается, причем ωК > ω0.
2. В значительном интервале изменения частоты вращения ротора магнитная цепь машины остается насыщенной и поток сохраняет примерно постоянное значение (1,5-2,0)ФНОМ.
3. Значения токов ротора и статора значительно превосходят номинальные значения.
Рассматривая физические процессы, происходящие в машине, можно установить следующее. Если скорость вращения ротора превышает ωНАЧ, то возрастает частота свободной составляющей тока статора вследствие насыщения магнитной системы машины (см. рис. 4-23) и φ будет больше φНАЧ. Вектор тока статора поворачивается по часовой стрелке (рис. 4-24), но его амплитуда возрастает. Вместе с тем нарастание тока в роторе I2 приводит к появлению размагничивающей составляющей магнитного потока в воздушном зазоре. При скорости вращения ротора ωК наступает равенство реактивных составляющих токов I1 и I2' и процесс самовозбуждения машины прекращается.
Тогда
(4-49)
Считая равными I1 и I2' из-за малости их активных составляющих, и используя выражение (4-49), находим:
где φK - критическое значение относительной частоты поля статора.
Рис. 4-24. Векторная диаграмма самовозбуждения асинхронного генератора
Схема замещения фазы двигателя и его векторная диаграмма позволяют найти зависимости для электромагнитной мощности и момента, последний определяется тепловыми потерями в статоре и роторе машины [40]. Однако эти расчеты связаны с очень сложными и громоздкими вычислениями всех зависимостей, изображенных на рис. 4-23. Поэтому воспользуемся упрощенной методикой расчета механической характеристики, которая определяется следующей зависимостью [40]:
где М0 - начальный (расчетный) тормозной момент при скорости ω0.
Величина М0 получена экспериментально в виде произведения МНОМkC°, где k - коэффициент, зависящий от типа конкретного двигателя. Он может приниматься равным 0,7 для четырех- и шестиполюсных машин и 0,5 для двухполюсных, С°
- фазная емкость конденсаторов в относительных единицах от CНОМ. Задавая значение φНАЧ, можно вычислить С°
по формуле
Номинальная емкость конденсаторной батареи (фазная)
где Iμ НОМ - ток намагничивания машины при номинальном (фазовом) напряжении статора; ω0 - синхронная скорость вращения магнитного поля при частоте сети 50 Гц.
Рис. 4-25. Статические механические характеристики асинхронной машины при конденсаторном торможении: при емкости в фазе С1 (кривая 1), при емкости в фазе С2 (кривая 2 и 3) и различных значениях тока намагничивания Iμ2 » Iμ3
Механические характеристики (рис. 4-25) показывают, что увеличение емкости конденсаторов снижает значение угловых скоростей ωНАЧ и ωК, а также и максимальный тормозной момент. При увеличении тока намагничивания (кривая 3) повышается насыщение магнитной цепи, что приводит к уменьшению индуктивного сопротивления машины и увеличению максимума тормозного момента и угловой скорости ωК.
Рис. 4-26. Комбинированное конденсаторно-динамическое торможение: а - принципиальная схема; б - механические характеристики
Как было указано выше, комбинированные способы торможения оказываются эффективными для получения полной остановки привода. В зависимости от моментов замыкания контактов тормозного контактора КТ в такой системе возможно получение даже трех последовательно сменяющихся тормозных режимов (рис. 4-26,б): конденсаторного (кривая 1), магнитного (кривая 2) и динамического (кривая 3) либо только первого и последнего. Переход привода из двигательного режима в тормозной и переключение различных тормозных режимов указано на рисунке стрелками. Например, если замыкание контактов КТ происходит в момент, соответствующий точке с, то в ней совершается переход от конденсаторного к магнитному торможению, которое заканчивается в точке d, далее почти до остановки привода идет динамическое торможение.
7. Технические реализации. Применения
Асинхронный двигатель с короткозамкнутым ротором уже около 100 лет используется и будет использоваться как практически единственная реализация массового нерегулируемого электропривода, составляющего до настоящего времени более 90 % всех промышленных электроприводов. В последние 10—20 лет многими фирмами в Америке и Европе предпринимаются попытки разработки и выпуска на широкий рынок так называемых энергоэффективных двигателей, в которых за счет увеличения на 30 % массы активных материалов на 1—5 % повышен номинальный КПД при соответствующем увеличении стоимости. В последние годы в Великобритании осуществлен крупный проект создания энергоэффективных двигателей без увеличения стоимости.
В последнее десятилетие благодаря успехам электроники (ПЧ) короткозамкнутый асинхронный двигатель стал основой частотно-регулируемого электропривода, успешно вытесняющего доминировавший ранее электропривод постоянного тока во многих сферах. Особенно интересным является применение такого электропривода в традиционно нерегулируемых насосах, вентиляторах, компрессорах. Как показывает опыт, это техническое решение позволяет экономить до 50 % электроэнергии, до 20 % воды и более 10 % тепла.
Переход от нерегулируемого электропривода к регулируемому во многих технологиях рассматривается как основное направление развития электропривода, поскольку при этом существенно повышается качество технологических процессов и экономится до 30 % электроэнергии. Это определяет перспективы развития частотно-регулируемого электропривода.
Электропривод с двигателями с фазным ротором при реостатном регулировании традиционно находит применение в крановом хозяйстве, используется в других технологиях. Каскадные схемы и машины двойного питания можно встретить в мощных электроприводах газоперекачивающих станций с небольшим диапазоном регулирования, в устройствах электродвижения судов.
Устройство асинхронных машин
В основу принципа действия асинхронной машины положено использование вращающегося магнитного поля, которое индуцирует электродвижущую силу (ЭДС) в обмотке ротора. При взаимодействии тока" ротора с вращающимся магнитным полем создается электромагнитный момент, приводящий ротор во вращение (в двигательном режиме) или осуществляющий его торможение (в тормозных режимах)
8-
Принцип действия асинхронной машины
Принцип действия асинхронной машины основан на законе электромагнитной индукции, открытом
М. Фарадеем, и работах Д. Максвелла и Э. Ленца.
В асинхронной мащине одну из обмоток размещают на статоре 1 (рис1.1 а), а вторую - на роторе 5. Между ротором и статором имеется воздушный зазор, который для улучшения магнитной связи между обмотками делают по возможности малым. Обмотка статора 2 представляет собой многофазную (или в частном случае трехфазную) обмотку, катушки которой размещают равномерно по окружности статора. Фазы обмотки статора АХ, BY и CZ соединяют по схеме Y или А и подключают к сети трехфазного тока. Обмотку ротора 4 выполняют многофазной короткозамкнутой или трехфазной и размещают равномерно вдоль окружности ротора.
Из курса теоретических основ электротехники известно, что при питании трехфазным синусоидальным током трехфазной обмотки статора возникает вращающееся магнитное поле, частота вращения (об/мин) которого
П1=60f1|р Где f1-частота питающей сети. р-. число пар полюсов
Вращающееся магнитное поле индуцирует в проводниках замкнутой накоротко обмотки ротора ЭДС Е2 и по ним проходит ток 12.
На рис.1.1,а показано (по правилу правой руки) направление ЭДС, индуцированной в проводниках ротора при вращении магнитного потока Ф по часовой стрелке (при этом проводники ротора перемещаются относительно потока Ф против часовой стрелки). Если ротор неподвижен или частота его вращения меньше частоты п1, то активная составляющая тока ротора совпадает по фазе с индуцированной ЭДС; йри этом условные обозначения (крестики и точки) на рис. 1.1 показывают одновременно и направление активной составляющей тока.
Рис. 1.1. Электромагнитная схема асинхронной машины и направление ее элек
тромагнитного момента при работе машины в режимах: двигательном (а), гене
раторном (б) и электр. торможения (в)
На проводники с током, расположенные в магнитном поле, действуют электромагнитные силы, направление которых определяется правилом левой руки. Суммарное усилие Fpe3, приложенное ко всем проводникам ротора, образует электромагнитный момент М, увлекающий ротор за вращающимся магнитным полем.
Электромагнитный момент, возникающий от взаимодействия магнитного потока Фи тока ротора I2
М=сФI2соsф2
где с- коэффициент пропорциональности; I2соsф2 - активная составляющая тока ротора; ф2- угол сдвига фаз между током I2 и ЭДС Е2 в обмотке ротора.
Если электромагнитный момент М достаточно велик, то ротор приходит во вращение и его установившаяся частота вращения п2 соответствует равенству электромагнитного момента тормозному, создаваемому приводимым во вращение механизмом и внутренними силами трения. Такой режим работы асинхронной машины является двигательным.
Частота вращения ротора П2 всегда отличается от частоты вращения магнитного поля П1 так как в случае совпадения этих частот вращающееся поле не пересекает обмотку ротора ив ней не индуцируется ЭДС, а следовательно, и не создается вращающий момент.
Относительную разность частот вращения магнитного поля и ротора называют скольжением:
S=( П1- П1) | П1
Его выражают в относительных единицах или процентах по отношению К П1 Частота вращения ротора с учетом
П2= П1 ( 1-S)
Таким образом, характерной особенностью асинхронной машины является наличие скольжения, т.е. неравенство частот вращения П1 и П1 Поэтому машину и называют асинхронной (ее ротор вращается несинхронно с полем).
При работе асинхронной машины в двигательном, режиме частота вращения ротора меньше частоты вращения магнитного поля П1< П2 и 0< S <l. В этом случае обмотка статора питается от сети, а вал ротора передает механический момент на какой-либо механизм.
В машине электрическая энергия преобразуется в механическую.
Если ротор заторможен (S =1)-это режим короткого замыкания. В случае если частота вращения ротора совпадает с частотой вращения магнитного поля (синхронная частота), т. е. S =0, то вращающий момент не возникает.
Если ротор асинхронной машины разогнать с помощью внешнего момента (например, каким-либо двигателем) до частоты П2, большей частоты вращения магнитного поля П1 то изменится направление ЭДС в проводниках ротора и активной составляющей тока ротора. При этом изменит свое направление и электромагнитный момент М, который станет тормозящим, т. е. асинхронная машина перейдет в генераторный режим (рис. 1.1, б). В генераторном режиме асинхронная машина получает механическую энергию от первичного двигателя, преобразует ее в электрическую и отдает в сеть, при этом 0>S> — ∞.
Если вращать ротор от постороннего двигателя в сторону, противоположную вращению магнитного поля (рис. 1.1, в), то ЭДС и активная составляющая тока в проводниках ротора направлены так же, как и в двигательном режиме, т. е. машина получает из сети электрическую энергию. Однако в данном режиме электромагнитный момент М направлен против вращения ротора, т. е. является тормозящим. Этот режим работы асинхронной машины - режим электромагнитного торможения. В этом режиме ротор вращается в обратном направлении (по отношению к направлению магнитного поля), поэтому П2<0.а 1<S<∞ В рассматриваемом режиме энергию машина получает как со стороны ротора (механическую), так и со стороны статора (электрическую).
9-Устройство асинхронных машин
Основные типы двигателей. Асинхронные двигатели подразделяются на два основных типа: с короткозамкнутым и фазным ротором (последние называют двигателями с контактными кольцами). Рассматриваемые двигатели имеют одинаковую конструкцию статора и отличаются лишь выполнением ротора.
Двигатели скороткозамкнутым ротором являются наиболее
распространенными; электропромышленность выпускает их десятками миллионов в год.
На рис. 1.2, а показан общий вид наиболее распространенного асинхронного двигателя с короткозамкнутым ротором закрытого обдуваемого исполнения. На статоре расположена трехфазная обмотка. Обмотка ротора выполнена в виде беличьей клетки, т. е. является короткозамкнутой.
Конструкция оболочки (корпус, щиты и др.) в значительной мере зависит от исполнения машины по степени защищенности и от выбранной системы охлаждения. В рассматриваемой конструкции корпус машины для лучшего охлаждения снабжен ребрами. Центробежный вентилятор, расположенный на валу двигателя снаружи оболочки машины, обдувает ребристый корпус двигателя. Вентилятор закрыт воздухонаправляющим кожухом.
Внутри машины воздух перемешивается вентиляционными лопастями, отлитыми вместе с короткозамыкающими кольцами. На корпусе крепится коробка выводов, в которой установлена клем-мная панель с выведенными концами обмотки статора.
В более мощных двигателях для повышения интенсивности охлаждения воздух прогоняется через аксиальные каналы ротора отдельным вентилятором или тем же вентилятором, который обдувает внешнюю поверхность машины. Для этой цели при использовании одного общего вентилятора в аксиальные отверстия ротора вставляют, воздухопроводящие трубки, укрепленные в отверстиях опорных дисков, насаженных на вал ротора (рис. 1.2, б). Этим предотвращается возможность проникновения к обмоткам машины наружного воздуха, в котором содержится влага. Торцовые щиты имеют жалюзи для прохода и выхода наружу воздуха.
Сердечник статора (магнитопровод) набирается из отштампованных кольцеобразных листов электротехнической стали толщиной 0,35... 0,5 мм. В листах выштампованы пазы для размещения обмотки (рис. 1.3). В крупных машинах статор собирается из листов в виде сегментов. На листы с обеих сторон наносится изоляция (оксидная пленка, лак и пр.). Листы в пакете сердечника скрепляются скобами, сваркой или в крупных машинах шпильками. В машинах свыше 400 кВт в сердечниках для лучшего охлаждения обычно имеются радиальные каналы. Они образуются путем разделения сердечника по длине на ряд пакетов и установкой между ними стальных дистанционных прокладок, которые привариваются к крайним листам пакета.
Рис. 1.2. Асинхронные двигатели с короткозамкнутым ротором: 1-короткозамыхающие кольца обмотки ротора; 2, 10-подшипниковые щиты; 3 - вентиляционные лопатки; 4 -обмотка статора;
5 -коробка выводов; б -корпус (станина); 7 -сердечник статора; 8-сердечник ротора; 9-вал; 11-кожух вентилятора; 12 -вентилятор; 13-опорный диск; 14 - воздухоподводящая трубка
В пазы магнитопровода статора укладывается обмотка, изготовленная из прямоугольног иликруглого провода Обмотки из прямоугольного провода изготовляют в виде жестких секций и укладывают в открытые или по луоткрытые пазы (рис. 1.4, а, б). Обмотки из круглого провода всыпают обычно в полузакрытые пазы через шлиц в пазу (рис. 1.5) с помощью специальных статорообмоточных станков. В высоковольтных машинах корпусную изоля цию катушек обычно выполняют в виде спрессованной гильзы (смрис 1.4) В современных асинхронных машинах используют электроизоляционные материалы классов на-гревостойкости В и F, а для специальных машин, работающих в тяжелых условиях.- материаллы класса Н
Рис 1.3 Сердечник статора и штампованный лист
В современных асинхронных машинах используют электроизоляционные материалы классов нагревостойкости В и F, а для специальных машин, работающих в тяжелых условиях,- материалы класса Н
В машинах различают межвитковую и корпусную изоляцию. Межвитковая изоляция (между витками обмотки) обеспечивается изоляцией самого проводника, наносимой на него в процессе изготовления на кабельных заводах или при изготовлении электрической машины. Корпусная изоляция отделяет проводники обмотки от корпуса электрической машины. Для нее используют различные прокладки, гильзы или ряд слоев изоляции, наносимой на соответствующую катушку до установки ее в машину
Рис 1.4
Открытый
(а)
и полуоткрытый (б) пазы статора для для обмотки из жестских секций-
1.4.5-изоляционные прокладки 2- проводники 3- изоляция катушки(корпусная) 6-клин Ротор машины состоит из пакета листов электротехнической стали с выштампованными пазами. В короткозамкнутых ротарах пазы заливаются алюминием. При этом образуются стержни беличьей клетки (рис1.6 а) Одновременно отлива- ются короткозамыкающие торцовые кольца и вентиляционные лопасти, общий вид такого ротора показан на рис. 1.6, б. В более крупных и специальных машинах в пазы ротора вставляются медные (бронзовые, латунные) стержни, концы которых впаиваются (ввариваются) в короткозамыкающие медные кольца (рис. 1.6, в). Пакет с алюминиевой клеткой напресовывается на вал. Для роторов с медной клеткой листы собираются
непосредственно на валу, а уже затем в пазы пакета вставляются медные стержни.
Роторы двигателей вращаются в подшипниках, как правило, применяются подшипники качения, в машинах свыше 1000 кВт используются также подшипники скольжения. В случае необходимости на валу устанавливается вентилятор. Подшипники закрепляются в подшипниковых щитах, подшипниковые щиты крепятся к корпусу статора. Двигатели с фазным ротором находят значительно меньшее применение, чем с коротко-замкнутым ротором, и выпускаются промышленностью главным образом в виде машин мощностью свыше 100 кВт.
Рис 1.5 Рис. 1.5. Пазы статора для всыпных од
нослойной (а) и двухслойной (б) обмо
ток:
1 - проводники; 2 - изоляция паза (корпусная) ; 3 - крышка - клин; 4 - прокладка
На рис. 1.7 показан общий вид асинхронного двигателя с фазным ротором защищенного исполнения. Для лучшего охлаждения магнитопроводы статора и ротора в машинах большой и средней мощности разделены на отдельные пакеты, между которыми имеются вентиляционные каналы. Вентиляционные лопасти, укрепленные
Рис. 1.6. Конструкция короткозамкнутого ротора:
/ - сердечник ротора; 2 - стержни беличьей клетки; 3 -вентиляционные лопасти
4 -короткозамыкающиекольца
на лобовых (внешних) частях жестких секций обмотки, засасывают воздух в машину через отверстия в щитах и
выбрасывают его через отверстия в корпусе. Такая вентиляция называется симметричной радиальной. Контактные кольца расположены вне оболочки машины.
Рис. 1.7. Асинхронный двигатель с фазным ротором:
7 - коробка выводов; 2 -вал; 3 -вентиляционные лопасти; 4 -обмотка ротора; 5 - обмотка статора;
6,11-подшипниковые щиты; 7-сердечник статора; 8- сердечник ротора; 9 - радиальный вентиляционный канал; 10 -диффузор; 12 -щеточная траверса; 13 -кожух; 14 -контактные кольца
Рис. 1.8. Пазы фазного ротора с всыпной обмоткой из круглого провода (а) и с жесткой обмоткой (б):
1 - клин; 2 -проводники; 3- прокладка; 4 - изоляция паза (корпусная)
выводные концы обмотки ротора проходят через отверстие в валу и подключаются к контактным кольцам болтами. Щеткодержатели со щетками прикрепляются щеточной траверсой к щиту. В двигателях с фазным ротором в пазы ротора укладывают всыпную обмотку из круглого провода (рис. 1.8, а) или обмотку, состоящую из жестких секций, укладываемых в открытые пазы ротора (рис. 1.8,6), или же обмотку из стержней, вкладываемых в полузакрытые пазы с торца. Три конца от фазных обмоток присоединяются к контактным кольцам, установленным на вал двигателя.
10.Список литературы
1 И.П Копылов – “Электрические машины”-Москва 2002 год
2 В.И Радин. А.Е Зорохович – “Электрические машины”-Москва 1988год
3 Г.Н Петров – “Электрические машины”-“ Энергия“ -Москва 1974год 1 часть
4 Г.Н Петров – “Электрические машины”-“ Энергия“ -Москва 1963год