Реферат на тему Нелинейные многоволновые взаимодействия в упругих системах
Работа добавлена на сайт bukvasha.net: 2015-05-04Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
от 25%
договор
Нелинейные многоволновые взаимодействия в упругих системах
На основе закона сохранения энергии предлагается физическая интерпретация свойств решений эволюционных уравнений, описывающих амплитудно-фазовую модуляцию нелинейных волн. Приводится алгоритм приведения дифференциальных уравнений, описывающих нелинейные многоволновые процессы в распределенных механических системах, к нормальной форме. Изучаются вопросы возникновения резонанса.Solutions to the evolution equations describing the phase and amplitude modulation of nonlinear waves are physically interdivted basing on the law of energy conservation. An algorithm reducing the governing nonlinear partial differential equations to their normal form is proposed. The occurrence of resonance at the expense of nonlinear multi-wave coupling is discussed.
Введение
Принципы нелинейных многоволновых взаимодействий были впервые признаны примерно два века назад, благодаря экспериментальным и теоретическим работам Фарадея (1831), Мельде (1859), Релея (1883, 1887). Неплохой исторический обзор этой темы может быть найден в работе [1], так что необходимы лишь только несколько вводных замечаний. До первой мировой войны подобные идеи воплощались в радиотелефонных устройствах. После второй мировой войны появилось множество новых приложений в технике и технологиях, включая высокочастотную электронику, нелинейную оптику, океанологию, физику плазмы и т.д. Сегодня теория нелинейных многоволновых взаимодействий, применительно к механическим системам, развита не в той степени, чтобы найти уже сейчас свое достойное применение на практике.В работе представлена попытка объединения и обобщения тематической информации на основе уже достаточно известных, но разрозненных фактов. На основе закона сохранения энергии предлагается физическая интерпретация свойств решений эволюционных уравнений, описываюцих амплитудно-фазовую модуляцию нелинейных волн. Приводится алгоритм приведения дифференциальных уравнений, описывающих нелинейные многоволновые процессы в распределенных механических системах, к нормальной форме. Изучаются вопросы возникновения резонанса в нелинейных многоволновых системах.
Эволюционные уравнения
Распространение слабонелинейных волн в упругих средах обычно описывается квазилинейными дифференциальными уравнениями с частными производнымигде
Пусть закон движения системы определяется функцией Лагранжа
Здесь
При малых значениях
В настоящей заметке преимущественно будут изучаться лагранжевы нелинейные динамические системы.
Чтобы яснее понять сущность эволюционных уравнений, вводится функция Гамильтона
где
(1)
где разность
(2)
где
(3)
где
Нормальная форма уравнений
Рассматривается натуральная[3] квазилинейная механическая система, движение которой характеризуется лагранжевыми уравнениями, представленными в квазинормальной матричной форме [2](4)
с соответствующими граничными и начальными условиями. Здесь
где
Здесь
Наряду с системой (4) рассматривается соответствующая линеаризованная подсистема
(5)
аналитическое решение которой, удовлетворяющее соответствующим краевым и начальным условиям, представляется суперпозицией нормальных волн
где
(6)
где
(7)
Например
где
Очевидно, что собственные числа оператора
В первом приближении получаются линейные уравнения для нахождения нормализующего преобразования:
Всякой полиномиальной компоненте
в то время как
Аналогично, во втором приближении разложения решения по
собственные значения оператора
Таким образом, если хотя бы одно собственное значение оператора
В теории нормальных форм существует основная теорема Пуанкаре, накладывающая одновременно весьма сильные условия на спектральные параметры системы и на коэффициенты нормализующего преобразования, для того чтобы две подходящие различные системы обыкновенных дифференциальных уравнений оказались аналитически эквивалентными. Во множестве задач о колебаниях нелинейных механических систем условия теоремы Пуанкаре, как правило, не выполняются. Например, основные типы резонансов второго порядка ассоциируются с трехволновыми резонансными процессами, когда
Наиболее важные случаи резонансов третьего порядка следующие: четырехволновые резонансные процессы, при выполнении условий синхронизма:
Во всех приведенных примерах резонансов второго и третьего порядков в общем случае наблюдается ярко выраженная амплитудная модуляция, глубина которой растет, когда фазовая расстройка стремится к нулю. Волны, фазы которых удовлетворяют условиям фазового синхронизма, формируют так называемые резонансные ансамбли.
Наконец, во втором нелинейном приближении всегда присутствуют так называемые нерезонансные взаимодействия, когда условия фазового синхронизма вырождаются в следующие “тривиальные” случаи: кросс-взаимодействия пары волн, при
Нерезонансные взаимодействия в основном характеризуются только лишь фазовой модуляцией волн.
Основное предложение настоящего пункта можно сформулировать следующим образом. Если в системе (4) нет резонансов, начиная с порядка
Для получения формально пригодного преобразования (7) в резонансном случае, следует пересмотреть структуру системы сравнения (5) в сторону модификации ее правой части:
(8)
таким образом, чтобы нелинейные слагаемые
Уместны следующие замечания
Теория нормальных форм достаточно просто обобщается на случай так называемых существенно нелинейных систем, поскольку малый параметрФормально, собственные значения оператора
Резонанс в многоволновых системах
Явление резонанса играет ключевую роль в динамике большинства физических систем. Интуитивно, резонанс ассоциируется с одним частным случаем силового возбуждения линейных колебательных систем. Такое возбуждение сопровождается с более или менее скорым ростом амплитуды колебаний при достаточной близости одной из собственных частот колебаний системы к частоте внешнего периодического возмущения. В свою очередь, в случае так называемого параметрического резонанса возникают некоторые рациональные соотношения между собственными частотами системы и частотой параметрического возмущения. Таким образом, резонанс можно проще всего классифицировать, согласно выше приведенному эскизу, по его порядку, начиная с первого,
Для широкого класса механических систем со стационарными краевыми условиями математическое определение резонанса следует из рассмотрения следующих усредненных функций
(9)
где
Здесь
Пример 1. Рассматриваются линейные поперечные колебания тонкой балки, подверженной действию малой внешней периодической силы и параметрического возбуждения, согласно уравнению
где
где
где
Отметим, что резонансные свойства системы с нестационарными краевыми условиями не всегда могут быть обнаружены с помощью функции
Пример 2. Рассматриваются уравнения, описывающие колебания балки по модели Бернулли-Эйлера:
с граничными условиями
В то же время, резонанс первого порядка, испытываемый продольной волной на частоте
Литература
1. Kaup P. J., Reiman A. and Bers A. Space-time evolution of nonlinear three-wave interactions. Interactions in a homogeneous medium, Rev. of Modern Phys., (1979) 51 (2), 275-309.2. Ковригин Д.А., Потапов А.И. Нелинейная волновая динамика одномерных упругих систем. Изв. вузов. ПНД, (1996) 4 (2), 72-102.
3. Маслов В.П. Операторные методы. М.: Наука, 1973, с.544.
4. Jezequel L., Lamarque C. - H. Analysis of nonlinear dynamical systems by the normal form theory, J. of Sound and Vibrations, (1991) 149 (3), 429-459.
5. Журавлёв В.Ф., Климов Д.М. Прикладные методы в теории колебаний. М.: Наука, 1973, с.328.
[1] Малый параметр может также характеризовать меру внешнего силового воздействия, диссипацию энергии колебаний, и т.д. В этих случаях уравнения Эйлера-Лагранжа следует модифицировать введением подходящих обобщенных сил.
[2] Дискретная часть спектра колебаний представима в виде суммы дельта функций, т.е. .
[3] Под натуральной подразумевается система, обладающая ограниченным ресурсом энергии.
[4] Например, если оператор — полином, то , где — скаляр, — вектор с постоянными компонентами, — некоторая функция (более детально см. [3]).
[5] В прикладных проблемах определение резонанса следует прямо связать с порядком применяемой асимптотической процедуры. Например, если рассматривается первое приближение, то скачками функции второго порядка, при , следует пренебрегать [5].