Научная работа

Научная работа на тему Доказательство великой теоремы Ферма 3

Работа добавлена на сайт bukvasha.net: 2014-11-09

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 27.1.2025


Файл: FERMA-FIN © Н. М. Козий, 2008
Свидетельства Украины № 27312 и 28607
о регистрации авторского права
ДОКАЗАТЕЛЬСТВО ВЕЛИКОЙ ТЕОРЕМЫ ФЕРМА
ДОКАЗАТЕЛЬСТВО ВЕЛИКОЙ ТЕОРЕМЫ ФЕРМА ДЛЯ НЕЧЕТНЫХ ПОКАЗАТЕЛЕЙ СТЕПЕНИ
Великая теорема Ферма формулируется следующим образом: диофантово уравнение (http://soluvel.okis.ru/evrika.html):
Аn+ Вn = Сn*                                    /1/
где n- целое положительное число, большее двух, не имеет решения в целых положительных числах A, B, С.
ДОКАЗАТЕЛЬСТВО
Доказательство строим, исходя из основной теоремы арифметики, которая называется «теоремой о единственности факторизации» или «теоремой о единственности разложения на простые множители целых составных чисел». Возможны нечетные и четные показатели степени n. Рассмотрим случай, когда показатель степени n- нечетное число. В этом случае выражение /1/ преобразуется по известным формулам следующим образом:
Аn + Вn = Сn = (A+B)[An-1-An-2·B +An-3·B2- …-A·Bn-2+Bn-1] /2/
Полагаем, что A и B – целые положительные числа.
Из уравнения /2/ следует, что при заданных значениях чисел A и B множитель (A+B) имеет одно и тоже значение при любых значениях показателя степени n.
* Числа А, В и С должны быть взаимно простыми числами.
Уравнение /2/ действительно при любом нечетном значении показателя степени n. Следовательно, из уравнения /1/ при n =1 имеем:
А1 + В1 = С1
А + В = С /3/
Следовательно, число (А + В) является делителем числа С .
Допустим, что число С - целое положительное число. Тогда с учетом принятых условий и основной теоремы арифметики должно выполняться условие:
Сn = An + Bn =(A+B)n∙ Dn , /4/
где число D также должно быть целым числом.
Из уравнения /4/ следует:
 /5/
Из уравнения /4/ также следует, что число [Cn = An + Bn] при условии, что число С – целое число, должно делиться на число (A+B)n . Однако известно, что:
An + Bn < (A+B)n /6/
Следовательно:
- дробное число, меньшее единицы. /7/
- дробное число.
Отсюда следует, что при нечетном значении показателя степени n уравнение /1/ великой теоремы Ферма не имеет решения в целых положительных числах.
Таким образом, великая теорема Ферма не имеет решения в целых положительных числах при нечетном показателе степени n >2.
ДОКАЗАТЕЛЬСТВО ВЕЛИКОЙ ТЕОРЕМЫ ФЕРМА ДЛЯ ЧЕТНЫХ ПОКАЗАТЕЛЕЙ СТЕПЕНИ
Доказательство строим аналогично вышеизложенному доказательству для нечетных показателей степени. Любое четное число, за исключением числа p=2q, является произведением числа p на нечетные, простые или составные, числа. Следовательно, четный показатель степени можно записать следующим образом:
n= pkm = 2q ∙km, /8/
где: p=2q;
q =1, 2, 3,…;
k =1,3,5,7,9,…;
m=3,5,7,9,11,…
Тогда уравнение /1/ можно записать следующим образом:
Сn = An + Bn =Apkm + Bpkm= (Apk )m + (Bpk )m /9/

Поскольку показатель степени m – нечетное число, то алгебраическое выражение /9/ преобразуется аналогично уравнению /2/ следующим образом:
Cn = Cpkm = (Apk + Bpk)∙[ (Apk )m-1 - (Apk )m-2 ∙Bpk +
+ (Apk )m-3 ∙(Bpk )2 -…- Apk ∙(Bpk )m-2 + (Bpk )m-1 ] /10/
При этом уравнения /4/ и /5/ преобразуются следующим образом:
Cn = Cpkm = (Apk + Bpk)m ∙ Dpkm /11/
Dpkm = (Apkm + Bpkm) / (Apk + Bpk )m /12/
В соответствии с уравнением /6/:
(Apkm + Bpkm) < (Apk + Bpk )m /13/
Следовательно, число Dpkm – дробное число, меньшее единицы.
Отсюда следует, что и при четном показателе степени n= 2q ∙km уравнение /1/ не имеет решения в целых положительных числах.
Таким образом, великая теорема Ферма не имеет решения в целых положительных числах, как при нечетном, так и при четном показателе степени n >2 и не равном n ≠2q.
Для показателя степени n =2q существует иное доказательство великой теоремы Ферма.
Автор: Николай Михайлович Козий,
инженер-механик

1. Реферат на тему Bungee Jumping Essay Research Paper Bungee JumpingBungee
2. Реферат на тему Book Review Essay Research Paper Book ReviewFor
3. Сочинение на тему Смысл заглавия романа МГорького Мать Образ Ниловны
4. Реферат на тему Product Life Cycle
5. Курсовая на тему Роль рекламы в продвижении товара
6. Биография на тему Андерсен ХК
7. Реферат на тему Macbeth 5 Essay Research Paper Macbeth
8. Сочинение на тему Португальская литература
9. Реферат Интеллектуальная собственность 5
10. Реферат Взаимоотношения политики с другими сферами общественной жизни