Задача

Задача Решения к Сборнику заданий по высшей математике Кузнецова Л.А. - 2. Дифференцирование. Зад.5

Работа добавлена на сайт bukvasha.net: 2015-10-29

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 2.6.2025


Задача 5. Найти производную.

5.1.

(9x2+8x-1)(x+1)1/2(3x3+4x2-x-2)

y'=2/15* ___________________2(1+x)1/2 =

1+x

= 2/15* (2x+2)(9x2+8x-1)-3x3-4x2+x+2 =

2(x+1)3/2

=2/15* 18x3+16x2-2x+18x2+16x-2-3x3-4x2+x+2 =

2(x+1)3/2

= 2/15* 15x3+30x2+15x =

2(x+1)3/2

= x(x+1)2 = x(x+1)1/2

(x+1)3/2

5.2.

3x3*4x(x2+1)1/2+x(2x2-1) -9x2(2x2-1)(x2+1)1/2

y'= (x2+1)1/2 =

9x6

= 12x4(x2+1)+3x4(2x2-1)-9x2(2x2-1)(1+x2) =

9x6(x2+1)1/2

= 12x4+12x6+6x6-3x4-18x4-18x6+9x2+9x4 =

9x6(x2+1)1/2

= 9x2 = 1 .

9x6(x2+1)1/2 x4(x2+1)1/2

5.3.

y'= (4x3-16x)(x2-4)-(x4-8x2)2x = 4x5-16x3-16x3+64x-2x5+16x3 =

2(x2-4)2 2(x2-4)2

=2x5-16x3+64x =x(x2-4)2+16x = x+ 16x2 .

2(x2-4)2 (x2-4)2 (x2-4)2

5.4.

(4x-1)√(2+4x) – 2(2x2-x-1)

y'= √(2+4x) = (4x-1)(2+4x)-4x2+x+1 =

3(2+4x) 3(2+4x)√(2+4x)

= 12x2+5x-1 .

3(2+4x)√(2+4x)

5. 5.

8x19√(1+x8)+ 4x19(1+x8) – 12x11(1+x8)3/2

y'= √(1+x8) =

12x24

= 12x19(1+x8)-12x11(1+x8)2 =

12x24√(1+x8)

= x11(x16-2x8+1) = (x8-1)2 .

x24√(1+x8) x13√(1+x8)

5.6.

2x√(1-3x4) + 6x5 ­

y'= √(1-3x4) = 2x(1-3x4)+6x5 = x .

2(1-3x4) 2(1-3x4)√(1-3x4) √(1-3x4)3

5.7.

y= (2x(4+x2)√(4+x2)+3/2√(4+x2)*2x)x5-(x2-6)(4+x2)√(4+x2)*5x4 =

120x10

= √(4+x2)(8x6+2x8+3x6-20x6-5x8+30x6+120x4) =

120x10

= √(4+x2)(7x2-x4+40)

40x6

5.8.

y= 3/2√(x2-8)*2x4-(x2-8)√(x2-8)*18x2 =

6x6

(x2-8)(x4-6x4+48x2) = √(x2-8)(48-5x2)

3x6 3x4

5.9.

9x3(2+x3)2/3-(4+3x3)((2+x3)2/3+2/3* 3x3 )

y'= (2+x3)1/3 =

x2(2+x3)4/3

= 9x3(2+x3)-(4+3x3)(2+3x3) = 8 .

x2(2+x3)5/3 x2(2+x3)5/3

5.10.

y'= √(x)*(2(1+x3/4)*3/4x5/4-(1+x3/4)2*3/2*√(x)) =

3(1+x3/4)2/3*x6/4

= √(x)(x3/2-1)

2x(1+x3/2)2/3

5.11.

(6x5+3x2)√(1-x3) + 3x2(x6+x3-2)

y' = 2√(1-x3) =

1-x3

=(2-2x3)(6x5+3x2)+3x8+3x5-6x2 = (9x5-9x8) = 9x5 .

2(1-x3)3/2 2(1-x3)3/2 2√(1-x3)

5.12.

2x4√(4+x2)+ x4(x2-2) -3x2(x2-2)√(4+x2)

y'= √(4+x2) =

24x6

= 2x4(4+x2)+x4(x2-2)-3x2(x2-2)(4+x2) = 1

24x6 x4

5.13.

2x√(1+2x2)- 2x(1+x2)

y'= √(1+2x2) = x(1+2x2)-x(1+x2) = x3 .

2(1+2x2) (1+2x2)3/2 (1+2x2)3/2

5.14.

y'= ((3x+2)/(2√(x-1))+3√(x-1))x2-2x√(3x+2) =

4x4

= x2(3x+2)+6x2(x-1)-4x(x-1)(3x+2) = 9x3-12x2+8x = 9x2-12x+8

4x2√(x-1) 4x2√(x-1) 4x√(x-1)

5.15.

y'= 3/2*√(1+x2)*2x4-3x2(1+x2)3/2 = √(1+x2)*(x4-x2-x4) = -√(1+x2)

3x6 x6 x4

5.16.

(6x5+24x2)√(8-x3)+3x2(x6+8x3-128)

y'= 2√(8-x3) =

8-x3

= (16-2x3)(6x5+24x2)+3x2(x6+8x3-128) = 72x5-9x8 = 9x5

2(8-x3)3/2 2(8-x3)3/2 2√(8-x3)

5.17.

x2(x-2)+x2√(2x+3)-(2x2-4x)√(2x+3)

y'= √(2x+3) =

x4

= x2(x-2+2x+3)-(2x2-4x)(2x+3) = 3x2-x3+12x = 3x-x2+12

x4√(2x+3) x4√(2x+3) x3√(2x+3)

5.18.

y'=-2x5√(x3+1/x)+(1-x2)*1/5*(x3+1/x)4/5*(3x2-1/x2)=1/5*(x3+1/x)4/5(3x2-1/x2-3x4+1)-2x(x3+1/x)1/5

5.19.

4x4√(x2-3)+x4(2x2+3) - 3x2(2x2+3)√(x2-3)

y' = √(x2-3) =

9x6

= 4x4(x2-3)+x4(2x2+3)-3x2(2x2+3)(x2-3) = 27x2 = 3 .

9x6√(x2-3) 9x6√(x2-3) x4√(x2-3)

5.20.

y'= (x2+5)3/2-3/2*(x-1)√(x2+5)*2x = √(x2+5)(5+3x-2x2)

(x2+5)3 (x2+5)3

5.21.

2x2√(x2-x)+(2x-1)(2x+1)x2-2x(2x+1)√(x2-x)

y'= √(x2-x) =

x4

= x2(2x2-2x+4x2-1)-(4x2+2x)(x2-x) = 2x2+1

x4 x2

5.22.

_ 1+√x _ 1-√x

y' = √((1+√x)/(1-√x))* 2√x 2√x =

(1+√x)2

= -2√((1+√x)/(1-√x)) = -1 .

2√x(1+√x)2 √(x(1-x))(1+√x)

5.23.

(x2+4x+5) - x(x+2)

y' = √(x2+4x+5) = - 2x2-6x-5 .

(x+2)2(x2+4x+5) (x+2)2(x2+4x+5)3/2

5.24.

2x+1 -3(x2+x+1)1/3

y' = (x2+x+1)2/3 = -3x2-x-2 .

(x+1)2 (x+1)2(x2+x+1)2/3

5.25.

y'= 3√((x-1)4/(x+1)2)*(x-1)2-2(x-1)(x+1) = -3√((x-1)4/(x+1)2)*x2+2x-3 =

(x-1)4 (x-1)4

= 3-x2-2x

(x2-1)2/3(x-1)2

5.26.

(x2+2x+7)-(x+1)(x-1)

y' = √(x2+2x+7) = x2+2x+7-x2-8x-7 = -x .

6(x2+2x+7) 6(x2+2x+7)3/2 (x2+2x+7)3/2

5.27.

y' = (x2+x+1)(√(x+1)+x/(2√(x+1)))-(2x2+x)√(x+1) =

(x2+x+1)2

= (3x+2)(x2+x+1)-(4x2+2x)(x+1) = -x3-x2+3x+2

2(x2+x+1)√(x+1) 2(x2+x+1)√(x+1)

5.28.

y' = 2x√(1-x4)+2x(x2+2)/√(1-x4) = 3x-x5+x3

2-2x4 (1-x4)3/2

5.29.

y' = (√(2x-1)+(x+3)/√(2x-1))(2x+7)-(2x+6)√(2x-1) =

(2x+7)2

= (3x+2)(2x+7)-(2x+6)(2x-1) = 2x2+15x+20

(2x+7)2√(2x-1) (2x+7)2√(2x-1)

5.30.

y' = (3+1/(2√x))√(x2+2)-(3x+√x)x/√(x2+2) =

x2+2

= (6√x+1)(x2+2)-2x√x(3x+√x) = 12√x+2-x2

2√x(x2+2)3/2 2√x(x2+2)3/2

5.31.

y' = (18x5+16x3-2x)√(1+x2)-x(3x6+4x4-x2-3)/√(1+x2) = 16x7+14x5+16x4+15x3

15+15x2 15(1+x2)3/2


1. Реферат на тему Nuclear Proliferaiton Essay Research Paper Nuclear EnergyYou
2. Реферат на тему Occupation Of Japan Essay Research Paper For
3. Контрольная работа Методи прийняття стратегічних управлінських рішень
4. Реферат Характеристика медицинской генетики
5. Реферат на тему Лекции - Терапия заболевания кишечника
6. Реферат на тему Минералы Крыма
7. Реферат Учет затрат по факторам производства и центрам ответственности за качество на предприятии
8. Курсовая на тему Оценка показателей рентабельности
9. Курсовая на тему Анализ финансовохозяйственной деятельности страховой компании Росгосстрах
10. Реферат Интернет-аддикция в подростковой среде