Контрольная работа

Контрольная работа Расчет математического ожидания и дисперсии

Работа добавлена на сайт bukvasha.net: 2015-10-25

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 23.11.2024


1. Пароль для входа в компьютерную базу данных состоит из 7 цифр. Какова вероятность правильного набора пароля с первого раза, если: д) на нечетных местах комбинации стоят одинаковые цифры

Решение:

P(A) =

n – общее число исходов.

Допустим на нечетных местах стоит 0_0_0_0_0

На трех других местах может быть: n0= комбинаций ( 10 цифр, 3 места), если на нечетных местах стоит 1, и т.д.

n= n0+n2+…+n0=10∙=

m= число благоприятных исходов

m=0

P(A) = =0,0001

Ответ: 0,0001



2. Девять карточек, пронумерованных цифрами от 1 до 9, расположены друг за другом в случайном порядке. Определить вероятности следующих событий: Г) каждая из последних 4 карточек имеет номер больше 3



Будем использовать классическое определение вероятности:



,



где m – число исходов, благоприятствующих осуществлению события , а n – число всех элементарных равновозможных исходов.

Сразу вычислим, что - число различных способов разложить карточки.

Найдем число исходов, благоприятствующих этому событию. Номер больше трех имеют карточки: 4,5,6,7,8,9, всего 6 карточек. Выбираем на последнее место карточку 6 способами (любую из этих шести), на предпоследнее место карточку 5 способами (любую из оставшихся пяти, одна уже выбрана), на третье с конца место карточку 4 способами, на четвертое с конца место карточку 3 способами. Получили всего способов разложить последние 4 карточки так, чтобы их номер был больше 3. Теперь раскладываем оставшиеся 5 карточек 5!=120 способами. Итого получаем 120*360=43200 способов.

Тогда вероятность .

Ответ: 0,119

3. Отрезок AB разделен точкой C в отношении 3:7. На этот отрезок наудачу бросается 5 точек. Найти наивероятнейшее число точек, попавших на отрезок AC и вероятность именно такого числа точек на отрезке AC

Бросается 5 точек n=5

Вероятность попасть на АС для одной точки Р== 0,3

1)-наивероятнейшее число точек, попавших на АС



np –q ≤< np +p



p= 0,3; q=1-p=0,7

5∙ 0,3-0,7 ≤ < 5∙ 0,3+ 0,3

0,8 ≤ < 1,8

=1

2) Вероятность именно такого числа точек на АС

(1)=?

Применим формулу Бернулли.



(K) = . . ;



(1)= . . = ∙0,3 ∙= 5 ∙ 0,3∙ = 0,36

Ответ: 0,36



4. Устройство состоит из трех независимо работающих элементов. Вероятности отказа первого, второго и третьего элементов соответственно равны 0,2, 01 и 0,6. Найти вероятность того, что не отказал первый элемент, если известно, что отказали какие-то два элемента



Решение. =0,2 =0,1 =0,6 - отказ.

= 1- =0,8 =0,4- не отказ.

Событие А- отказали какие-то два

- первый отказал Р()=0,2=

(А)=+ 0,2∙0,1∙0,4+ 0,2∙0,9∙0,6=0,116

-первый не отказал Р=0,8=

(А)= 0,048

По формуле полной вероятности

P(A)=0,2∙0,116+0,8∙0,048=0,0616

Искомую вероятность найдем по формуле Байеса:



()= =



Ответ: 0,62





5. Бросаются две игральные кости. Найти для произведения очков на выпавших гранях: математическое ожидание; дисперсию

Решение. Введем независимые случайные величины и равные, соответственно, числу очков, выпавших на первой и на второй кости. Они имеют одинаковые распределения:

1

2

3

4

5

6

1/6

1/6

1/6

1/6

1/6

1/6

Найдем математическое ожидание

.

Найдем дисперсию

.

Тогда математическое ожидание суммы числа очков, которые могут выпасть при одном бросании двух игральных костей равно

.

Дисперсия суммы числа очков, которые могут выпасть при одном бросании двух игральных костей равна (так как бросания костей независимы):



.

Ответ: 7; 35/6.

6. Математическое ожидание и среднее квадратическое отклонение нормально распределенной случайной величины Х соответственно равны 30 и 4. Найти вероятность того, что Х в 5 испытаниях ровно 3 раза примет значение, заключенное в интервале (29, 31)

Решение. Используем формулу

,

где математическое ожидание, среднее квадратическое отклонение α=29, β=31.

P(29<х<31)=Ф(=Ф(0,25)-(0,25)= Ф(0,25)+Ф(0,25) = 2∙Ф(0,25) = 2∙0,3413∙0,25 = 0,17065 Ответ: 0,17065



7. В порядке серийной выборки из 1000 контейнеров бесповторным отбором взято 10 контейнеров. Каждый контейнер содержит равное количество однотипных изделий, полученных высокоточным производством. Межсерийная дисперсия проверяемого параметра изделия равна 0,01. Найти: границы, в которых с вероятностью 0,99 заключено среднее значение проверяемого параметра во всей партии, если отобрано 50 контейнеров, а общая средняя равна 5



При беспроводном отборе применяется формула:



n=

N=1000 n==5

p=0,99 ≈0,98

Подставим:

5=

5=

5000+0,049=98

0,049=98

Т.к. х=5, то интервал 50,14


1. Реферат на тему Death Of Ivan Ilyich Essay Research Paper
2. Реферат на тему VChip Essay Research Paper What is a
3. Курсовая на тему Организация питания по принципу шведский стол 2
4. Реферат Символдрама как метод коррекции тревожности у детей младшего школьного возраста
5. Реферат Секреция половых желез
6. Доклад на тему Фридрих Вильгельм Бессель
7. Реферат на тему CD Essay Research Paper creativity in dreams
8. Реферат Исследование Луны и Венеры
9. Курсовая Организация контроля работы подчиненных на предприятиях сервиса и туризма
10. Контрольная работа на тему Бухгалтерский учет и имущество организации