Курсовая на тему Размерный анализ технологических процессов изготовления вала-шестерни
Работа добавлена на сайт bukvasha.net: 2015-07-02Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
Министерство образования и науки Российской Федерации
Тольяттинский государственный университет
Кафедра «Технология машиностроения»
КУРСОВАЯ РАБОТА
по дисциплине
«Технология машиностроения»
на тему
«Размерный анализ технологических процессов изготовления вала-шестерни»
Выполнил:
Группа:
Преподаватель: Михайлов А.В.
Тольятти, 2005
УДК 621.965.015.22
Аннотация
Зарипов М.Р. размерный анализ технологического процесса изготовления детали вал-шестерня.
К.р. – Тольятти.: ТГУ, 2005.
Выполнен размерный анализ технологического процесса изготовления детали вал-шестерня в продольном и радиальном направлении. Рассчитаны припуски и операционные размеры. Проведено сравнение результатов операционных диаметральных размеров, полученных расчетно-аналитическим способом и методом размерного анализа с использованием операционных размерных цепей.
Расчетно-пояснительная записка на 23стр.
Графическая часть – 4 чертежей.
Чертеж детали – А3.
Размерная схема в осевом направлении – А2.
Размерная схема в диаметральном направлении – А2.
Размерная схема в диаметральном направлении продолжение – А3.
Содержание
Технологический маршрут и план изготовления детали
Технологический маршрут и его обоснование
План изготовления детали
Обоснование выбора технологических баз, классификация технологических баз
Обоснование простановки операционных размеров
Назначение операционных требований
Размерный анализ технологического процесса в осевом направлении
Размерные цепи и их уравнения
Проверка условий точности изготовления детали
Расчет припусков продольных размеров
Расчет операционных размеров
Размерный анализ технологического процесса в диаметральном направлении
Радиальные размерные цепи и их уравнения
Проверка условий точности изготовления детали
Расчет припусков радиальных размеров
Расчет операционных диаметральных размеров
Сравнительный анализ результатов расчетов операционных размеров
Расчет диаметральных размеров расчетно-аналитическим методом
Сравнение результатов расчета
Литература
Приложения
Технологический маршрут и план изготовления детали
Технологический маршрут и его обоснование
В данном разделе опишем основные положения, использованные при формировании технологического маршрута детали.
Тип производства – среднесерийный.
Способ получения заготовки – штамповка на ГКШП.
При разработке технологического маршрута используем следующие положения:
Обработку разделяем на черновую и чистовую, повышая производительность (снятие больших припусков на черновых операциях) и обеспечивая заданную точность (обработка на чистовых операциях)
Черновая обработка связана со снятием больших припусков, что ведет к износу станка и снижению его точности, поэтому черновую и чистовую обработку будем вести на разных операциях с применением различного оборудования
Для обеспечения требуемой твердости детали введем ТО (закалка и высокий отпуск, шейки под подшипники - цементация)
Лезвийную обработку, нарезку зубьев и шпоночного паза произведем перед ТО, а после ТО абразивная обработка
Для обеспечения требуемой точности создаем искусственные технологические базы, используемые на последующих операциях – центровые отверстия
Более точные поверхности будем обрабатывать в конце ТП
Для обеспечения точности размеров детали будем использовать специализированные и универсальные станки, станки с ЧПУ, нормализованные и специальные режущие инструменты и приспособления
Для простоты составления плана изготовления закодируем поверхности рис.1.1 и размеры детали и приведем сведения о требуемой точности размеров:
ТА2 = 0,039(–0,039)
Т2Б = 0,016()
Т2В = 0,1(+0,1)
Т2Г = 0,74(+0,74)
Т2Д = 0,74(+0,74)
Т2Е = 0,016()
ТЖ = 1,15(–1,15)
ТИ = 0,43(–0,43)
ТК = 0,22(–0,22)
ТЛ = 0,43(–0,43)
ТМ = 0,52(–0,52)
ТН = 0,036()
ТП = 0,2(-0,2)
Рис. 1.1
Технологический маршрут оформим в виде таблицы:
Таблица 1.1
Технологический маршрут изготовления детали
№ операции | Наименование операции | Оборудование (тип, модель) | Содержание операции |
000 | Заготовительная | ГКШП | Штамповать заготовку |
010 | Фрезерно-центровальная | Фрезерно-центровальный МР-71М | Фрезеровать торцы 1,4; сверлить центровальные отверстия |
020 | Токарная | Токарный п/а 1719 | Точить поверхности 2, 5, 6, 7; 8, 3 |
030 | Токарная с ЧПУ | Токарный с ЧПУ 1719ф3 | Точить поверхности 2, 5, 6; 3, 8 |
040 | Шпоночно-фрезерная | Шпоночно-фрезерный 6Д91 | Фрезеровать паз 9, 10 |
050 | Зубофрезерная | Зубофрезерный 5В370 | Фрезеровать зубья 11, 12 |
060 | Зубофасочная | Зубофасочный СТ 1481 | Снять фаску с зубьев |
070 | Зубошевинговальная |
Зубошевинговальный 5701
Шевинговать зубья 12
075
ТО
Закалка, высокий отпуск, правка, цементация
080
Центродоводочная
Центродоводочный 3922
Зачистиь центровочные отверстия
090
Круглошлифовальная
Круглошлифовальный 3М163ф2Н1В
Шлифовать поверхности 5, 6, 8
100
Торцекруглошлифовальная
Торцекруглошлифовальный 3М166ф2Н1В
Шлифовать поверхности 2, 6; 3, 8
110
Зубошлифовальная
Зубошлифовальный 5А830
Шлифовать зубья
12
План изготовления детали
Приведем в виде таблицы 1.2 план изготовления детали, оформленный в соответствие с требованиями [5]:
Таблица 1.2
План изготовления детали вал-шестерня
Обоснование выбора технологических баз, классификация технологических баз
На фрезерно-центровальной операции в качестве черновых технологических баз выбираем общую ось шеек 6 и 8, и торец 3 – как будущими основными конструкторскими базами.
На черновом точении за технологические базы принимаем полученную на предыдущей операции ось 13 (используем центры) и обработанные на предыдущей операции торцы 1 и 4.
При чистовом точении используем в качестве технологических баз ось 13, а опорная точка лежит на поверхности центровых отверстий – используем принцип постоянства баз и исключаем погрешность неперпендикулярности, как составляющую погрешности выполнения осевого размера.
Таблица 1.3
Технологические базы
№ операции | № опорных точек | Наименование базы | Характер проявления | Реализация | № обрабатываемых поверхностей | Операционные размеры | Единство баз | Постоянство баз | ||||||||||||||||||||||||||||||||||||||||
|
|
| Явная | скрытая | Естественная | Искусственная | Станочные приспособления |
|
|
|
| |||||||||||||||||||||||||||||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |||||||||||||||||||||||||||||||||||||
010 | 1- 4 5 6 | ДН О О | - + + | + - - | - + + | + - - |
| 13 1 4- |
|
|
| |||||||||||||||||||||||||||||||||||||
020-А | 1- 4
5 6 | ДН
О О | -
+ + | +
- - | -
+ + | +
- - | Жесткий и плавающий центры, поводковый патрон | 5 6 7 2 - | 2А 2Б 2Г Т - | + + + + - | - - - - - | |||||||||||||||||||||||||||||||||||||
020-Б | 1- 4 5 6 | ДН О О | - + + | + - - | - + + | + - - |
| 8 3 - | 2Е У - | + - - | + - - | |||||||||||||||||||||||||||||||||||||
030-А | 1- 4
5 6 | ДН
О О | -
+ + | +
- - | -
- + | +
+ - |
| 5 6 2 - | 2А 2Б Ф - | + + - - | + + - - | |||||||||||||||||||||||||||||||||||||
030-Б | 1- 4 5 6 | ДН О О | - + + | + - - | - - + | + + - |
| 8 3 - | 2Е Х - | + - - | + - - | |||||||||||||||||||||||||||||||||||||
040 | 1- 4 5
6 | ДН О
О | - +
+ | + -
- | - +
+ | + -
- |
| 10 9
- | П Н Ц - | + + + - | + - - - | |||||||||||||||||||||||||||||||||||||
050 | 1- 4
5 6 | ДН
О О | -
+ + | +
- - | -
+ + | +
- - |
| 11 12 - - | 2Д 2В - - | + + - - | + + - - | |||||||||||||||||||||||||||||||||||||
070 | 1- 4 5 6 | ДН О О | - + + | + - - | - + + | + - - |
| 12 - - | 2В - - | + - - | + - - | |||||||||||||||||||||||||||||||||||||
090-А | 1- 4
5 6 | ДН
О О | -
+ + | +
- - | -
- + | +
+ - |
| 5 6 - - | 2А 2Б - - | + + - - | + + - - | |||||||||||||||||||||||||||||||||||||
090-Б | 1- 4 5 6 | ДН О О | - + + | + - - | - - + | + + - |
| 8 - - | 2Е - - | + - - | + - - | |||||||||||||||||||||||||||||||||||||
100-А
На зубообрабатывающих операциях используем ось 13 и опорную точку на центровом отверстии, соблюдая принцип постоянства баз (относительно шеек подшипников), ибо, являясь исполнительной поверхностью, зубчатый венец должен быть точно выполнен относительно шеек подшипников. Для фрезерования шпоночного паза в качестве технологических баз используем ось 13 и торец 2. В сводной таблице приводим классификацию технологических баз, указываем их целевую принадлежность, выполнение правила единства и постоянства баз.
Способ простановки размеров зависит в первую очередь от метода достижения точности. Так как размерный анализ имеет большую трудоемкость выполнения, то применять его целесообразно при использовании метода достижения точности размеров с помощью настроенного оборудования. Особую важность представляет способ простановки продольных размеров (осевых для тел вращения). На черновой токарной операции мы можем применить схемы простановки размеров «а» и «б» рис.4.1[1]. На чистовой токарной и шлифовальных операциях применяем схему «г» рис.4.1[1].
Операционные технические требования назначаем по методике [5]. Технические требования на изготовление заготовки (допуски на размеры, смещение штампа) назначаем по ГОСТ 7505-89. Допуски на размеры определяем по приложению 1 [1], шероховатость – по приложению 4 [1], величины пространственных отклонений (отклонения от соосности и перпендикулярности) – по приложению 2 [1]. Для заготовки отклонения от соосности определим по методике [1]. Определим средний диаметр вала , (1.1) где di – диаметр i-ой ступени вала; li – длина i-ой ступени вала; l – общая длина вала. dср=38,5мм. По приложению 5[1] определим рк – удельная величина изогнутости. Величины изогнутости оси вала для различных участков определим по следующей формуле: , (1.2) где Li – расстояние наиболее удаленной точки i-ой поверхности до измерительной базы; L – длина детали, мм; Δmax=0,5·рк·L – максимальный прогиб оси вала в результате коробления; – радиус кривизны детали, мм; (1.3) Аналогично рассчитываем отклонения от соосности при термообработке. Данные для их определения также приведены в приложении 5[1]. После расчетов получаем
Составим уравнения размерных цепей в виде уравнений номиналов.
Проверку условий точности выполняем, чтоб убедиться в обеспечении требуемой точности размеров. Условие точности ТАчерт≥ω[А], где ТАчерт – допуск по чертежу размера; ω[А] – погрешность этого же параметра возникающая в ходе выполнения технологического процесса. Погрешность замыкающего звена найдем по уравнению (2.1)
Из расчетов видно, что погрешность размер К больше допуска. А это значит, что мы должны корректировать план изготовления. Для обеспечения точности размера [К]: на 100-ой операции обработаем с одного установа поверхности 2 и 3, тем самым уберем из размерной цепи размера [К] звенья С10, Ж10 и Р10, «заменив» их на звено Ч100(ωЧ=0,10). После внесения в план изготовления данных коррективов, получаем следующие уравнения размерных цепей, погрешность которых равна:
В итоге получаем 100% качество
Расчет припусков продольных размеров будем вести в следующем порядке. Напишем уравнения размерных цепей, замыкающим размером которых будут припуски. Посчитаем минимальный припуск на обработку по формуле , (2.2) где - суммарная погрешность пространственных отклонений поверхности на предыдущем переходе; - высоты неровностей и дефектный слой, образовавшиеся на поверхности при предыдущей обработке. Рассчитаем величины колебаний операционных припусков по уравнениям погрешностей замыкающих звеньев-припусков (2.1) (2.2) Расчет ведут по формуле (2.2) если количество составляющих звеньев припуска больше четырех. Находим значения максимальных и средних припусков по соответствующим формулам , (2.3) (2.4) результаты занесем в таблицу 2.1
Определим величины номинальных и предельных значений операционных размеров в осевом направлении по методу средних значений Исходя из уравнений, составленных в пунктах 2.2 и 2.3, найдем средние значения операционных размеров
запишем значения в удобной для производства форме
Составим уравнения размерных цепей с замыкающими звеньями-припусками, т.к. почти все размеры в радиальном направлении получаются явно (см. п.3.2)
Получаем 100% качество.
Расчет припусков радиальных размеров будем вести аналогично расчету припусков продольных размеров, но расчет минимальных припусков будем вести по следующей формуле (3.1) Результаты заносим в таблицу 3.1
Определим величины номинальных и предельных значений операционных размеров в радиальном направлении по методу координат средин полей допусков. Исходя из уравнений, составленных в пунктах 3.1 и 3.2, найдем средние значения операционных размеров
Определим координату средин полей допусков искомых звеньев по формуле (3.2)
Сложив полученные величины с половиной допуска, запишем значения в удобной для производства форме
Рассчитаем припуски для поверхности 8 по методике В.М. Кована [7]. Полученные результаты заносим в таблицу 4.1
Посчитаем общие припуски по формулам (4.1) (4.2) Посчитаем номинальный припуск для вала (4.3) Результаты расчетов номинальных припусков сводим в таблицу 4.2 Таблица 4.2 Сравнение общих припусков
Найдем данные по изменению припусков (4.4) Мы получили разницу припусков в 86%, вследствие неучета при расчете методом Кована следующих моментов: особенностей простановки размеров на операции, погрешности выполняемых размеров, влияющих на величину погрешности припуска и др. Литература
2. Курсовая на тему Анализ АПК 3. Реферат Культурное наследие Египта 4. Сочинение на тему Тургенев и. с. - Женские образы в романе и. с. тургенева отцы и дети 5. Контрольная работа на тему Понятие ценной бумаги в российской практике 6. Реферат Психология массового поведения 7. Реферат на тему Was The Traty Of Versallies Too Harsh 8. Диплом на тему Учет и аудит товарно-материальных запасов на примере Республиканского государственного казенного 9. Реферат на тему Religiological Analysis Of The Islam Essay Research 10. Реферат Гендерная статистика |