Реферат

Реферат на тему Nitroglycerine Essay Research Paper Nitroglycerin C3H5N3O9 Nitroglycerin

Работа добавлена на сайт bukvasha.net: 2015-06-13

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 22.11.2024


Nitroglycerine Essay, Research Paper

Nitroglycerin (C3H5N3O9) Nitroglycerin is one of the most sensitive explosives ever to be commercially produced. It is a very dense liquid, and is sensitive to heat, impact, and many organic materials. Although it is not water soluble, it will dissolve in 4 parts of pure ethyl alcohol. Heat of Combustion: 1580 cal/g Products of Explosion: Carbon Dioxide, Water, Nitrogen, Oxygen Human Toxicity: Highly toxic vasodilator, avoid skin contact! Although it is possible to make it safely, it is difficult to do so in small quantities. Many a young pyrotechnician has been killed or seriously injured while trying to make the stuff. When Nobel’s factories make it, many people were killed by the all-to-frequent factory explosions. Usually, as soon as nitroglycerin is made, it is converted into a safer substance, such as dynamite. A person foolish enough to make nitroglycerine could use the following procedure: EQUIPMENT distilled water eyedropper thermometer 1 100 ml beaker 20 g sodium bicarbonate glycerine 3 300 ml beakers 13 ml concentrated nitric acid blue litmus paper 39 ml concentrated sulfuric acid 2 ice baths: 2 small non-metallic containers each filled halfway with: crushed ice 6 tablespoons table salt The salt will lower the freezing point of the water, increasing the cooling efficiency of the ice bath. 1) Prepare the two ice baths. While the ice baths are cooling, pour 150 ml of distilled water into each of the beakers. 2) Slowly add sodium bicarbonate to the second beaker, stirring constantly. Do not add too much sodium bicarbonate to the water. If some remains undissolved, pour the solution into a fresh beaker. 3) Place the 100 ml beaker into the ice bath, and pour the 13 ml of concentrated nitric acid into the 100 ml beaker. Be sure that the beaker will not spill into the ice bath, and that the ice bath will not overflow into the beaker when more materials are added to it. Be sure to have a large enough container to add more ice if it gets too warm. Bring the temperature of the acid down to 20? centigrade or less. 4) Slowly and carefully add 39 ml of concentrated sulfuric acid to the nitric acid. Mix well, then cool the mixture to 10? centigrade. Do not be alarmed if the temperature rises slightly when the acids are mixed. 5) With the eyedropper, slowly drip the glycerine onto the acid mixture, one drop at a time. Hold the thermometer along the top of the mixture where the mixed acids and glycerine meet. The glycerine will start to nitrate immediately, and the temperature will immediately begin to rise. Do not allow the temperature to rise above 30? celsius. If the temperature is allowed to get to high, the nitroglycerin may decompose spontaneously as it is formed. Add glycerine until there is a thin layer of glycerine on top of the mixed acids. 6) Stir the mixture for the first ten minutes of nitration, if neccessary adding ice and salt to the ice bath to keep the temperature of the solution in the 100 ml beaker well below 30?. The nitroglycerine will form on the top of the mixed acid solution, and the concentrated sulfuric acid will absorb the water produced by the reaction. 7) When the reaction is over, the nitroglycerine should be chilled to below 25?. You can now slowly and carefully pour the solution of nitroglycerine and mixed acid into the beaker of distilled water in the beaker . The nitroglycerine should settle to the bottom of the beaker, and the water-acid solution on top can be poured off and disposed of. Drain as much of the acid-water solution as possible without disturbing the nitroglycerine. 8) Carefully remove a small quantity of nitroglycerine with a clean eye-dropper, and place it into the beaker filled in step 2. The sodium bicarbonate solution will eliminate much of the acid, which will make the nitroglycerine less likely to spontaneously explode. Test the nitroglycerine with the litmus paper until the litmus stays blue. Repeat this step if necessary, using new sodium bicarbonate solutions each time. 9) When the nitroglycerine is as acid-free as possible, store it in a clean container in a safe place. The best place to store nitroglycerine is far away as possible from anything of value. Nitroglycerine can explode for no apparent reason, even if it is stored in a secure cool place. Picrates Although the procedure for the production of picric acid, or trinitrophenol has not yet been given, its salts are described first, since they are extremely sensitive, and detonate on impact. By mixing picric acid with a warm solution of a metal hydroxide, such as sodium or potassium hydroxide, metal picrates are formed. These picrates are easily soluble in warm water, (potassium picrate will dissolve in 4 parts water at 100? C), but relatively insoluble in cold water (potassium picrate will dissolve in 200 parts water at 10? C). While many of these picrates are dangerously impact sensitive, others are

Bibliography

This is my own writing. I study chemistry at a highly esteemed university and all information is accurate. I want no credit for this information.


1. Реферат Электромагнитные излучения
2. Реферат Понятие операционной стратегии, ее сущность
3. Реферат на тему Трудовые отпуска и порядок их применения
4. Контрольная работа Система государственного и муниципального управления Кубы
5. Книга Предмет и задачи педагогики 3
6. Реферат на тему Osteoporosis Essay Research Paper OsteoporosisOsteoporosis is a
7. Реферат Рынок как условие и объективная экономическая основа маркетинга
8. Реферат на тему Назначение и организация инспектирования в органах внутренних дел
9. Курсовая на тему Парфюмерия - духи
10. Реферат на тему Реформы первой четверти 19-го века