Реферат

Реферат Азот и его соединения

Работа добавлена на сайт bukvasha.net: 2015-10-28

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 23.11.2024


Содержание

Введение

Азот (общие сведения)

Соединения азота

Аммиак

Нитрит натрия

Нитрит калия

Нитрат кальция

Физические свойства

Химические свойства

Получение

Распространенность в природе

Применение

История открытия

Вывод: краткое содержание

Использованная литература

Введение

Основная масса азота на Земле находится в газообразном состоянии и составляет свыше 3/4 атмосферы (78,09% по объему, или 75,6% по массе). Практически на нашей планете за - пас азота неисчерпаем - 3,8*10^15 т. Азот - довольно инертный элемент, поэтому редко встречается в связанном состоянии. Это один из основных биофильных элементов, не - обходимый компонент главных полимеров живых клеток - структурных белков, белков - ферментов, нуклеиновых и аде - нозинтрифосворных кислот. Никакой другой элемент так не лимитирует ресурсы питательных веществ в агроэкосистемах, как азот. Он может стать доступным для живых организмов только в связанной форме, то есть в результате азотофиксации.

Азотофиксация - биологический процесс, и единственными организмами, способными его осуществлять, служат прокариоты (бактерии, цианобактерии, актиномицеты и архебактерии).

Небиологические процессы фиксации азота (грозовые разряды, воздействие УФ-лучей, работа электрического оборудования и двигателей внутреннего сгорания) в количественном отношении весьма несущественны, так как вместе дают не более 0.5% связанного азота. Даже вклад заводов азотных удобрений, производящих синтетический аммиак составляет лишь 5%.

Следовательно, свыше 90% всей фиксации молекулярного азота атмосферы осуществляется вследствие метаболической активности определённых микроорганизмов.

Впервые бактерии рода азотобактер, а точнее Azotobacter chroococcum были открыты голландским микробиологом М. Бейеринк в 1901 году.

Азот (общие сведения)

АЗОТ (лат. Nitrogenium - рождающий селитры), N (читается "эн") - химический элемент второго периода VA группы периодической системы, атомный номер 7, атомная масса 14,0067. В свободном виде - газ без цвета, запаха и вкуса, плохо растворим в воде. Состоит из двухатомных молекул N2, обладающих высокой прочностью. Относится к неметаллам.

Природный азот состоит из стабильных нуклидов 14N (содержание в смеси 99,635% по массе) и 15N. Конфигурация внешнего электронного слоя 2 s 2 3. Радиус нейтрального атома азота 0,074 нм, радиус ионов: N3 - 0,132, N3+ - 0,030 и N5+ - 0,027 нм. Энергии последовательной ионизации нейтрального атома азота равны, соответственно, 14,53, 29,60, 47,45, 77,47 и 97,89 эВ. По шкале Полинга электроотрицательность азота 3,05.

Соединения азота

НИТРАТЫ - соли азотной кислоты HNO3, твердые хорошо растворимые в воде вещества. Традиционное русское название некоторых нитратов щелочных и щелочноземельных металлов и аммония - селитры (аммонийная селитра NH4NO3, калийная селитра КNO3, кальциевая селитра Са (NO3) 2 и др.

НИТРИДЫ - химические соединения азота с более электроположительными элементами. Нитриды алюминия, бора, кремния, вольфрама, титана (AlN, BN, Si3N4, W2N, TiN) и многие другие - тугоплавкие, химические стойкие кристаллические вещества. Компоненты жаропрочных сплавов используются в полупроводниковых приборах (напр., полупроводниковых лазерах, светоизлучающих диодах), как абразивы. Действием азота или аммиака на металлы при 500-600 °С получают нитридные покрытия (высокотвердые, износо- и коррозионностойкие).

АЗОТА ОКСИДЫ: гемиоксид N2O и монооксид NO (бесцветные газы), сесквиоксид N2O3 (синяя жидкость), диоксид NO2 (бурый газ, при обычных условиях смесь NO2 и его димера N2O4), оксид N2O5 (бесцветные кристаллы). N2O и NO - несолеобразующие оксиды, N2O3 с водой дает азотистую кислоту, N2O5 - азотную, NO2 - их смесь. Все оксиды азота физиологически активны. N2O - средство для наркоза ("веселящий газ"), NO и NO2 - промежуточные продукты в производстве азотной кислоты, NO2 - окислитель в жидком ракетном топливе, смесевых ВВ, нитрующий агент.

Аммиак

NH3M=17,03

Встречается при очистке воды, керосина и некоторых минеральных масел; на сахарных заводах; при дублении кожи; в воздухе помещений, где стоит скот; входит в состав клоачных газов (вместе с сероводородом); содержится в неочищенном ацетилене.

Применяется для производства азотной кислоты, нитрата и сульфата аммония, жидких удобрений (аммиакатов), мочевины, соды, в органическом синтезе, при крашении тканей, светокопировании (на диазониевой бумаге), в качестве хладагента в холодильниках, при серебрении зеркал.

Получается прямым синтезом из газообразных водорода и азота при давлении обычно 280-350 ат и 450-500° (в присутствии катализаторов). В меньших количествах получается при коксовании каменного угля перегонкой с известью "аммиачной воды" (первая фракция при сухой перегонке угля).

Физические и химические свойства. Бесцветный газ с удушливым резким запахом (порог восприятия 0,037 мг/л) и едким вкусом. Т. плавл. - 77,75°; т. кип. - 33,35°; плоти.0,771 г/л (0°), 0,59 г/л (25°). Раств. в воде около 750г/л, или 526 г/л; коэфф. раств. в воде 762,6. Растворим в эфире и других органических растворителях. Пределы взрывоопасных концентраций в воздухе 15 - 28%, в кислороде 13,5--79%, в закиси азота 2,2-72%. На воздухе NH3 быстро переходит в (NH4) 2CO3 или поглощается влагой. При обычной температуре устойчив. Весьма реакционноспособен, вступает в реакции присоединения, замещения и окисления. Водный раствор, имеет щелочную реакцию вследствие образования гидрата окиси аммония NH*H. В продажу поступает в виде водных растворов, содержащих 28-29% (объемн) NH3, 10% раствора NH3 (нашатырный спирт) или сжиженного NH3 в стальных цилиндрах.

Нитрит натрия

NaNO2 М = 69,00

Применяется в производстве органических красителей; в пищевой промышленности; для пассивирования стальных изделий; в резиновой и текстильной промышленности, в гальванотехнике. Получается абсорбцией раствором соды нитрозных газов производства азотной кислоты и очисткой, упариванием и кристаллизацией полученной емки нитрита и нитрата натрия.

Физические и химические свойства. Бесцветные или желтоватые кристаллы. Т. плавл.271°; плоти.2,17: выше 320° разл., не доходя до кипения; раств. в воде 81,8 г/ЮО г (20°).163 г/ЮО г *О'). Токсическое действие. Вызывает расширение сосудов вследствие пареза сосуда - двигательного центра (при больших дозах - и вследствие непосредственного действия на кровеносные сосуды), а также образование в крови метгемоглобина.

Натриевая селитра, чилийская селитра.

NaNO3 М = 84.99

Применяется как удобрение; в пищевой, стекольной, металлообрабатывающей промышленности; для получения взрывчатых веществ, ракетного топлива и пиротехнических смесей.

Получается из природных залежей выщелачиванием горячей водой и кристаллизацией; абсорбцией раствором соды окислов азота; обменным разложением кальциевой или аммиачной селитры с сульфатом, хлоридом или карбонатом натрия.

Физические и химические свойства. Бесцветные кристаллы. Т. плавл.309,5°; плоти.2,257; разл. при 380°на нитрит и кислород; раств. в воде 88 г/100 г (20°), 176 г/100 г (100°).

Нитрит калия

KNO2 M=85,ll

Применяется в производстве азотокрасителей и некоторых органических соединений.

Получается восстановлением расплавленного KNО2 свинцом; пропусканием SO2 через нагретую смесь KNO3 и СаО.

Физические и химические свойства. Бесцветные или желтоватые кристаллы, расплывающиеся на воздухе. Т. плавл.387°; плоти.1,915; раств. в воде 280 г/100г (0°); 413 г/100 г (100°).

Токсическое действие, по-видимому, сходно с действием NaNO2.

Калийная селитра.

KNO3 М=101,ll

Применяется как удобрение, а также в производстве порохов, в пиротехнике, в пищевой и стекольной промышленности. Получается конверсией NaNO3 и KCl при 80-122°С.

Физические и химические свойства. Бесцветные кристаллы.Т. плавл.334°; плоти.2,11; разл. выше 338° на нитрит н кислород; раств. в воде 31,5 г/100 г (20°), 245 г/100 г (100°).

Нитрат кальция

(Кальциевая селитра, норвежская селитра)

Ca (NO3) 2 М=164.09

Применяется как удобрение.

Получается на основе нитрозных газов производства азотной кислоты.

Физические и химические свойства. Т. плаил.561°; разл. при 500°; плота.2,36; растя, в воде 126 г/ЮО г (20°), 363 г/ЮО г (100°). Безводная соль и кристаллогидраты очень гигроскопичны.

Токсическое действие. Имеет значение лишь раздражающее и прижигающее действие технического продукта, выражающееся в покраснении кожи, зуде, изъязвлениях, иногда глубоких и занимающих обширную поверхность, медленно заживающих и оставляющих большие рубцы. Поражаются участки кожи, на которых имеются хотя бы незначительные ранки, царапины и другие нарушения ее целостности.

Физические свойства

Плотность газообразного азота при 0°C 1,25046 г/дм3, жидкого азота (при температуре кипения) - 0,808 кг/дм3. Газообразный азот при нормальном давлении при температуре -195,8°C переходит в бесцветную жидкость, а при температуре -210,0°C - в белое твердое вещество. В твердом состоянии существует в виде двух полиморфных модификаций: ниже -237,54°C устойчива форма с кубической решеткой, выше - с гексагональной.

Критическая температура азота -146,95°C, критическое давление 3,9МПа, тройная точка лежит при температуре -210,0°C и давлении 125,03 гПа, из чего следует, что азот при комнатной температуре ни при каком, даже очень высоком давлении, нельзя превратить в жидкость.

Теплота испарения жидкого азота 199,3 кДж/кг (при температуре кипения), теплота плавления азота 25,5 кДж/кг (при температуре -210°C).

Энергия связи атомов в молекуле N2 очень велика и составляет 941,6 кДж/моль. Расстояние между центрами атомов в молекуле 0,110 нм. Это свидетельствует о том, что связь между атомами азота тройная. Высокая прочность молекулы N2 может быть объяснена в рамках метода молекулярных орбиталей. Энергетическая схема заполнения молекулярных орбиталей в молекуле N2 показывает, что электронами в ней заполнены только связывающие s - и p-орбитали. Молекула азота немагнитна (диамагнитна).

Из-за высокой прочности молекулы N2процессы разложения различных соединений азота (в том числе и печально знаменитого взрывчатого вещества гексогена) при нагревании, ударах и т.д. приводят к образованию молекул N2. Так как объем образовавшегося газа значительно больше, чем объем исходного взрывчатого вещества, гремит взрыв.

Химические свойства

Химически азот довольно инертен и при комнатной температуре реагирует только с металлом литием с образованием твердого нитрида лития

Li3N (3Li+N= Li3N-3).

В соединениях проявляет различные степени окисления (от -3 до +5). С водородом образует аммиак NH3. (3H+N=NH3) Косвенным путем (не из простых веществ) получают гидразин N2H4 и азотистоводородную кислоту HN3. Соли этой кислоты - азиды. Азид свинца Pb (N3) 2 разлагается при ударе, поэтому его используют как детонатор, например, в капсюлях патронов.

Известно несколько оксидов азота. С галогенами азот непосредственно не реагирует, косвенными путями получены NF3, NCl3, NBr3 и NI3, а также несколько оксигалогенидов (соединений, в состав которых, кроме азота, входят атомы и галогена, и кислорода, например, NOF3).

Галогениды азота неустойчивы и легко разлагаются при нагревании (некоторые - при хранении) на простые вещества. Так, NI3 выпадает в осадок при сливании водных растворов аммиака и йодной настойки. Уже при легком сотрясении сухой NI3 взрывается:

2NI3 = N2 + 3I2.

Азот не реагирует с серой, углеродом, фосфором, кремнием и некоторыми другими неметаллами.

При нагревании азот реагирует с магнием и щелочноземельными металлами, при этом возникают солеобразные нитриды общей формулы М3N2 (3M+N2=M3N2), которые разлагаются водой с образованием соответствующих гидроксидов и аммиака, например:

Са3N2 + 6H2O = 3Ca (OH) 2 + 2N+3H3.

Аналогично ведут себя и нитриды щелочных металлов. Взаимодействие азота с переходными металлами приводит к образованию твердых металлоподобных нитридов различного состава. Например, при взаимодействии железа и азота образуются нитриды железа состава Fe2N и Fe4N (N2+6Fe=Fe2N+Fe4N). При нагревании азота с ацетиленом C2H2 может быть получен цианистый водород HCN (N2+C2H2=2HCN).

Из сложных неорганических соединений азота наибольшее значение имеют азотная кислота HNO3, ее соли нитраты, а также азотистая кислота HNO2 и ее соли нитриты.

Получение

В промышленности азот получают из воздуха. Для этого воздух сначала охлаждают, сжижают, а жидкий воздух подвергают перегонке (дистилляции). Температура кипения азота немного ниже (-195,8°C), чем другого компонента воздуха - кислорода (-182,9°C), поэтому при осторожном нагревании жидкого воздуха азот испаряется первым. Потребителям газообразный азот поставляют в сжатом виде (150 атм. или 15 МПа) в черных баллонах, имеющих желтую надпись "азот". Хранят жидкий азот в сосудах Дьюара.

В лаборатории чистый ("химический") азот получают добавляя при нагревании насыщенный раствор хлорида аммония NH4Cl к твердому нитриту натрия NaNO2:

NaNO2 + NH4Cl = NaCl + N2 + 2H2O.

Можно также нагревать твердый нитрит аммония:

NH4NO2 = N2 + 2H2O.

Распространенность в природе

Азот - один из самых распространенных элементов на Земле, причем основная его масса (около 4*1015 т) сосредоточена в свободном состоянии в атмосфере. В воздухе свободный азот (в виде молекул N2) составляет 78,09% по объему (или 75,6% по массе), не считая незначительных примесей его в виде аммиака и окислов. Среднее содержание азота в литосфере 1,9*10-3% по массе. Природные соединения азота - хлористый аммоний NH4CI и различные нитраты. Крупные скопления селитры характерны для сухого пустынного климата (Чили, Средняя Азия). Долгое время селитры были главным для связывания азота имеет промышленный синтез аммиака из азота воздуха и водорода). Небольшие количества связанного азота находятся в каменном угле (1 - 2,5%) и нефти (0,02 - 1,5%), а также в водах рек, морей и океанов. Азот накапливается в почвах (0,1%) и в живых организмах (0,3%).

Хотя название “азот" означает “не поддерживающий жизни", на самом деле это - необходимый для жизнедеятельности элемент. В белке животных и человека содержится 16 - 17% азота. В организмах плотоядных животных белок образуется за счет потребляемых белковых веществ, имеющихся в организмах травоядных животных и в растениях. Растения синтезируют белок, усваивая содержащиеся в почве азотистые вещества, главным образом неорганические.

Значительные количества азота поступают в почву благодаря азотфиксирующим микроорганизмам, способным переводить свободный азот воздуха в соединения азота.

В природе осуществляется круговорот азота, главную роль в котором играют микроорганизмы - нитрофицирующие, денитрофицирующие, азотфиксирующие и др.

Однако в результате извлечения из почвы растениями огромного количества связанного азота (особенно при интенсивном земледелии) почвы оказываются обедненными. Дефицит азота характерен для земледелия почти всех стран, наблюдается дефицит азота и в животноводстве (“белковое голодание”). На почвах, бедных доступным азотом, растения плохо развиваются. Хозяйственная деятельность человека нарушает круговорот азота. Так, сжигание топлива обогащает атмосферу азотом, а заводы, производящие удобрения, связывают азот из воздуха. Транспортировка удобрений и продуктов сельского хозяйства перераспределяет азот на поверхности земли.

Применение

В промышленности газ азот используют главным образом для получения аммиака. Как химически инертный газ азот применяют для обеспечения инертной среды в различных химических и металлургических процессах, при перекачке горючих жидкостей. Жидкий азот широко используют как хладагент, его применяют и в медицине, особенно в косметологии. Важное значение в поддержании плодородия почв имеют азотные минеральные удобрения. В лаборатории азот легко может быть получен при нагревании концентрированного нитрита аммония: NH4NO2 (N2 + 2H2O. Технический способ получения азота основан на разделении предварительно сжиженного воздуха, который затем подвергается разгонке.

Основная часть добываемого свободного азота используется для промышленного производства аммиака, который затем в значительных количествах перерабатывается на азотную кислоту, удобрения, взрывчатые вещества и т.д. Помимо прямого синтеза аммиака из элементов, промышленное значение для связывания азота воздуха имеет разработанный в 1905 цианамидный метод, основанный на том, что при 10000С карбид кальция (получаемый накаливанием смеси известии угля в электрической печи) реагирует со свободным азотом: CaC2 + N2 (CaCN2 + C. Образующийся цианамид кальция при действии перегретого водяного пара разлагается с выделением аммиака: CaCN2 + 3H2O (CaCO3 + 2NH3.

Cвободный азот применяют во многих отраслях промышленности: как инертную среду при разнообразных химических и металлургических процессах, для заполнения свободного пространства в ртутных термометрах, при перекачке горючих жидкостей и т.д. Жидкий азот находит применение в различных холодильных установках. Его хранят и транспортируют в стальных сосудах Дьюара, газообразный азот в сжатом виде - в баллонах. Широко применяют многие соединения азота. Производство связанного азота стало усиленно развиваться после 1-й мировой войны и сейчас достигло огромных масштабов.

История открытия

Открыт в 1772 шотландским ученым Д. Резерфордом в составе продуктов сжигания угля, серы и фосфора как газ, непригодный для дыхания и горения ("удушливый воздух") и в отличие от CO2не поглощаемый раствором щелочи. Вскоре французский химик А.Л. Лавуазье пришел к выводу, что "удушливый" газ входит в состав атмосферного воздуха, и предложил для него название "azote" (от греч. azoos - безжизненный).

Соединения азота - селитра, азотная кислота, аммиак - были известны задолго до получения азота в свободном состоянии. В 1787 г.А. Лавуазье установил, что

“жизненный” и “удушливый” газы, входящие в состав воздуха, это простые вещества, и предложил название “азот". В 1784 г.Г. Кавендиш показал, что азот входит в состав селитры; отсюда и происходит латинское название азота

(от позднелатинского nitrum - селитра и греческого gennao - рождаю, произвожу), предложенное в 1790 году Ж.А. Шапталем. К началу ХIX в. были выяснены химическая инертность азота в свободном состоянии и исключительная роль его в соединениях с другими элементами в качестве связанного азота.

Вывод: краткое содержание

Основная масса азота на Земле находится в газообразном состоянии и составляет свыше 3/4 атмосферы (78,09% по объ - ему, или 75,6% по массе). Практически на нашей планете за - пас азота неисчерпаем - 3,8*10^15 т. Азот - довольно инертный элемент, поэтому редко встречается в связанном состоянии. Это один из основных биофильных элементов, не - обходимый компонент главных полимеров живых клеток - структурных белков, белков - ферментов, нуклеиновых и аде - нозинтрифосворных кислот. Никакой другой элемент так не лимитирует ресурсы питательных веществ в агроэкосистемах, как азот. Он может стать доступным для живых организмов только в связанной форме, то есть в результате азотофиксации.

Азотофиксация - биологический процесс, и единственными организмами, способными его осуществлять, служат прокариоты (бактерии, цианобактерии, актиномицеты и архебактерии).

Небиологические процессы фиксации азота (грозовые разряды, воздействие УФ-лучей, работа электрического оборудования и двигателей внутреннего сгорания) в количественном отношении весьма несущественны, так как вместе дают не более 0.5% связанного азота. Даже вклад заводов азотных удобрений, производящих синтетический аммиак составляет лишь 5%.

Следовательно, свыше 90% всей фиксации молекулярного азота атмосферы осуществляется вследствие метаболической активности определённых микроорганизмов.

Впервые бактерии рода азотобактер, а точнее Azotobacter chroococcum были открыты голландским микробиологом М. Бейеринк в 1901 году.

Использованная литература

  1. Большая энциклопедия Кирилла и Мефодия 2003.

  2. Мишустин Е. Н., Емцев В.Т. "Микробиология" Агропромиздат

  3. Мишустин Е. Н., Шильникова В.К. "Биологическая фиксация

  4. Азота атмосферы" Наука 1968г.


1. Кодекс и Законы Законы диалектики 3
2. Курсовая Виды рисков внутренней и внешней среды организации и учет их при управлении
3. Реферат Современное транспортное машиностроение стран зарубежной Европы тенденции развития и внутриреги
4. Реферат Космологические проблемы Вселенной
5. Реферат на тему Древнерусская иконопись шедевры северного Возрождения
6. Реферат на тему АП Чехов Рассказы Человек в футляре Крыжовник Дама с собачкой комедия Вишневый сад
7. Реферат Портретная галерея Волшебницы Зимы
8. Статья Парадокс синхронизации ситуационного конкурентного поведения. Casus belli в конкурентной борьбе
9. Контрольная_работа на тему Нормативное регулирование бухгалтерского учета в Российской Федерации
10. Реферат Взаємозв язок організованої злочинності відмивання доходів незаконного походження та тіньово