Реферат Лекция 7 Хвильовий опір хвильовода
Работа добавлена на сайт bukvasha.net: 2015-10-28Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
![](https://bukvasha.net/assets/images/emoji__ok.png)
Предоплата всего
![](https://bukvasha.net/assets/images/emoji__signature.png)
Подписываем
Лекція 7
Хвильовий опір хвильовода.
Для Т – хвилі: (для вакууму). Для ТЕ, ТМ хвиль введення хвильового опору не є однозначною задачею, бо існує кілька компонент. Домовились відносити опір до поперечної компоненти:
.
Електродинамічні потенціали
Векторний і скалярний потенціали вводяться наступним чином: ;
. У першому рівнянні, очевидно,
можна задавати з точністю до
. При цьому рівняння Максвела:
Тоді отримаємо рівняння для ЕД потенціалів:
Рівняння для Т, ТЕ, ТМ хвиль різні. Щоб звести їх до одного виду, використовуючи потенціали ,
, де
- електрична скалярна функція,
- магнітна скалярна функція. Якщо для Т – хвилі
завжди, то
, а
перетворюється в нуль завдяки
. Рівняння для
:
.
При цьому компоненти .
Інші компоненти можна отримати методом, який розглядався раніше. Для циліндричної СК: .
Круглий хвильовід.
Очевидно, будемо користуватися циліндричною СК :
Шукатимемо хвилю . Можна розв’язати
, однак ми розв’яжемо рівняння для скалярних потенціалів:
. З урахуванням вигляду оператора Лапласа у циліндричній системі координат одержимо:
.
Використаємо метод відокремлення змінних:
;
. Звідки очевидно, що:
а) , тут
- будь-який кут повороту, залежить лише від вибору координат (з’явився через симетрію задачі). Оберемо
.
б) - ЛДР зі змінними коефіцієнтами, тому звичайним шляхом його розв’язувати неможливо; потрібно застосувати спеціальні функції. Приведемо рівняння до стандартного вигляду: заміною
воно зводиться до рівняння Бесселя:
.
Його розв’язками є циліндричні функції (функції Бесселя):
(*)
Функції Неймана , а тому очевидно, що
, тому що поле при
повинно бути скінченим. Таким чином, якщо в задачі існує точка
, то розв’язок завжди береться у вигляді (*), де
, тобто у вигляді функції Бесселя:
.
Таким чином, ,
.
Скористаємося граничними умовами. Оскільки ; а
; то можна записати:
. Отже,
- це є умова для визначення
. Корені цього рівняння аналітично не отримуються, але їх можна знайти чисельно:
, де
- номер хвилі,
- номер рядку.
-
1
2
0
3.83
-
1
1.84
-
Отже, . Таким чином, для хвилі
. Критична довжина хвилі у хвилеводі визначається з умови
. Аналогічно
.
Тепер знайдемо картину хвиль. Для цього скористаємося топологічними перетвореннями:
Перетворюючи в декартову СК, одержали
в циліндричній СК.
Перший індекс – змінна по , другий – змінна по
. Таким чином у круглому хвильоводі “головною”, “найкращою” є хвиля
(в той час як у квадратному -
.