Реферат

Реферат Лекция 7 Хвильовий опір хвильовода

Работа добавлена на сайт bukvasha.net: 2015-10-28

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 1.4.2025


Лекція 7

Хвильовий опір хвильовода.

Для Т – хвилі: (для вакууму). Для ТЕ, ТМ хвиль введення хвильового опору не є однозначною задачею, бо існує кілька компонент. Домовились відносити опір до поперечної компоненти: .

Електродинамічні потенціали

Векторний і скалярний потенціали вводяться наступним чином: ; . У першому рівнянні, очевидно, можна задавати з точністю до . При цьому рівняння Максвела:

Тоді отримаємо рівняння для ЕД потенціалів:

Рівняння для Т, ТЕ, ТМ хвиль різні. Щоб звести їх до одного виду, використовуючи потенціали , , де - електрична скалярна функція, - магнітна скалярна функція. Якщо для Т – хвилі завжди, то , а перетворюється в нуль завдяки . Рівняння для :

.

При цьому компоненти .

Інші компоненти можна отримати методом, який розглядався раніше. Для циліндричної СК: .

Круглий хвильовід.

Очевидно, будемо користуватися циліндричною СК :


Шукатимемо хвилю . Можна розв’язати , однак ми розв’яжемо рівняння для скалярних потенціалів: . З урахуванням вигляду оператора Лапласа у циліндричній системі координат одержимо: .

Використаємо метод відокремлення змінних:

;

. Звідки очевидно, що:

а) , тут - будь-який кут повороту, залежить лише від вибору координат (з’явився через симетрію задачі). Оберемо .

б) - ЛДР зі змінними коефіцієнтами, тому звичайним шляхом його розв’язувати неможливо; потрібно застосувати спеціальні функції. Приведемо рівняння до стандартного вигляду: заміною воно зводиться до рівняння Бесселя:

.

Його розв’язками є циліндричні функції (функції Бесселя):

(*)

Функції Неймана , а тому очевидно, що , тому що поле при повинно бути скінченим. Таким чином, якщо в задачі існує точка , то розв’язок завжди береться у вигляді (*), де , тобто у вигляді функції Бесселя: .

Таким чином, , .

Скористаємося граничними умовами. Оскільки ; а ; то можна записати: . Отже, - це є умова для визначення . Корені цього рівняння аналітично не отримуються, але їх можна знайти чисельно:


, де - номер хвилі, - номер рядку.

1

2

0

3.83

-

1

1.84

-

Отже, . Таким чином, для хвилі . Критична довжина хвилі у хвилеводі визначається з умови . Аналогічно .

Тепер знайдемо картину хвиль. Для цього скористаємося топологічними перетвореннями:


Перетворюючи в декартову СК, одержали в циліндричній СК.


Перший індекс – змінна по , другий – змінна по . Таким чином у круглому хвильоводі “головною”, “найкращою” є хвиля (в той час як у квадратному - .


1. Курсовая Кинематический анализ механизма
2. Реферат на тему Teen Smoking Essay Research Paper Teen SmokingTeen
3. Реферат Рак молочной железы. Цитологическая диагностика
4. Реферат Понятие и структура банковской системы в России
5. Диплом на тему Изучение рассказов Чехова в средних и старших классах
6. Курсовая на тему Ликероводочные изделия
7. Реферат на тему Epa Oil Spill Program Essay Research Paper
8. Реферат на тему Scarlet Letter Essay Research Paper Hesters ExperiencesThroughout
9. Реферат Политическое учение Ивана Тимофеева. Политико-правовое учение Ф. Ницше
10. Сочинение на тему Достоевский ф. м. - В плену ложной идеи