Реферат

Реферат на тему Однополостный гиперболоид

Работа добавлена на сайт bukvasha.net: 2013-11-16

Поможем написать учебную работу

Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего

от 25%

Подписываем

договор

Выберите тип работы:

Скидка 25% при заказе до 14.1.2025


   Министерство высшего образования Российской Федерации
    Московский государственный строительный университет
РЕФЕРАТ
                                         
                                           На тему:
 
      “Однополостный    гиперболоид”
                                                         
                                                   Факультет: ПГС          
                                                   Группа: №15                      
                                                  Студент: Муравицкий А.С.              
                                                 Преподаватель: Ситникова Е.Г.
                                        
                                         
  
                                         Москва
                                                           2003
 Поверхности второго порядка – это поверхности, которые в прямоугольной системе координат определяются алгебраическими уравнениями второй степени. К ним относится однополосный гиперболоид.
 Однополосный гиперболоид.
 Однополосным гиперболоидом называется поверхность, которая в некоторой прямоугольной системе координат определяется уравнением
                     (1)
 Из уравнения (1) вытекает, что координатные плоскости яв­ляются плоскостями симметрии, а начало координат — центром симметрии однополостного гиперболоида.
Уравнение (1) называется каноническим уравнением однополосного гиперболоида. 
Если однополостный гиперболоид задан своим каноническим уравнением (1) то оси Ох, Оу и Oz называются его глав­ными осями.
   Установим вид поверхности (1). Для этого рассмотрим сечение ее координатными плоскостями Oxy (y=0) и Oyx (x=0). Получаем соответственно уравнения
                                   и      
из которых следует, что в сечениях получаются гиперболы.
    Теперь рассмотрим сечения данного гиперболоида плоскостями z=h, параллельными координатной плоскости Oxy. Линия, получающаяся в сечении, определяется уравнениями
                         или       
из которых следует, что плоскость z=h пересекает гиперболоид по эллипсу с полуосями     и  ,
достигающими своих наименьших значений при h=0, т.е. в сечении данного гиперболоида координатной осью Oxy получается самый маленький эллипс с полуосями a*=a и b*=b. При бесконечном возрастании  величины a* и b* возрастают бесконечно.

Таким образом, рассмотренные сечения позволяют изобразить однополосный гиперболоид в виде бесконечной трубки, бесконечно расширяющейся по мере удаления (по обе стороны) от плоскости Oxy.
Величины a, b, c называются полуосями однополосного гиперболоида.
Исследование поверхности методом параллельных сечений.
Суть метода заключается в выяснении формы линий пересечения поверхности с плоскостями, параллельными координатным плоскостям.
Рассмотрим линии пересечения с плоскостями, параллельными плоскости OXY. Все уравнения линий пересечений будут получаться из уравнения плоскости, в котором z будет заменена на некоторое число, равное расстоянию от пересекающей плоскости до плоскости OXY. Для более наглядного представления, я изобразил все полученные кривые в виде проекций на плоскость OXY. Изображения кривых представлены выше.
Величины a, b, c называются полуосями однополосного гиперболоида. Если a=b,то гиперболоид может быть получен вращением гиперболы с полуосями а и с вокруг мнимой оси 2с.
Одним из примеров такой поверхности является конструкция радиобашни построенной  по принципу сетчатых конструкций на Шаболовке (г. Москва), Владимиром Григорьевичем Шуховым в 1919 - 1922 гг. В прошедшем году исполнилось 80 лет Шаболовской радиобашне — символу советского телевидения 40-60-х годов.
 Список использованной литературы:
 1.Шипачёв В.С.: «Высшая математика»
2.В.А. Ильин, Э.Г. Позняк: «Аналитическая геометрия»
3.И.Н.Бронштейн, К.А.Семендяев «Справочник по математике для инженеров и учащихся ВТУЗОВ»





1. Реферат Оператор выбора case
2. Реферат Сущность, содержание и виды рисков
3. Реферат на тему Abortion Essay Research Paper ABSTARCTA stopped heart
4. Реферат Анализ деятельности коммерческого банка на рынке ценных бумаг
5. Реферат на тему 3 Blind Mice
6. Изложение на тему Сон Анупрэя
7. Реферат Понятие кристаллов
8. Курсовая на тему Производство и переработка масличного сырья
9. Реферат на тему The American Experience Essay Research Paper My
10. Реферат Центральный банк и его функции 4