Реферат Микробиология. Мир микроорганизмов
Работа добавлена на сайт bukvasha.net: 2015-10-28Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
от 25%
договор
План:
Введение
Предмет и задачи микробиологии
Основные этапы развития микробиологии
Общая характеристика микроорганизмов
Рост микроорганизмов
Условия роста
Поступление питательных веществ в клетку
Строение клеток прокариотов и эукариотов; архебактерии
Классификация грибов, значение
Дрожжи
Классификация дрожжей
Размножение дрожжей
Строение клетки эукариотов
Строение клетки прокариотов
Бактерии
Грамположительные и грамотрицательные бактерии
Классификация бактерий
Вирусы
Список литературы
Введение
Различия во внешнем виде и строении животных и растений прослеживают четко. Эти различия вытекают из разницы в способе питания.
Животные относятся к гетеротрофам, питающимися готовыми органическими веществами. Растения относятся к автотрофам. Они используют в качестве источника энергии солнечный свет.
Другие различия между животными и растениями наличие клеточных стенок, способность к движению, к синтезу определенных веществ.
Отличительный признак микроорганизмов - крайне малые размеры отдельной особи.
Диаметр бактерий не превышает 0,001 мм. В микробиологии пользуются единицей измерения - микрон, 1 мкм = 10-3 мм). Детали структуры микроорганизмов измеряют в нанометрах (1 нм = 10-3 мкм = 10-6 мм).
Благодаря небольшим размерам микроорганизмы легко перемещаются с током воздуха, по воде. Быстро распространяются.
Одной из важнейших свойств микроорганизмов является их способностью к размножению. Возможности м/организмов к быстрому размножению намного превосходят животных и растения. Некоторые бактерии могут делится каждые 8-10 мин. Так из одной клетки массой 2,5• 10-12 гр. за 2-4 сутки в благоприятных условиях могла бы образоваться биомасса порядка 1010 тонн.
Другой отличительной характеристикой м/организмов является разнообразие их физиологических и биохимических свойств.
Некоторые м/организмы могут расти в экстремальных условиях. Значительное число м/организмов могут жить при температуре - 1960С (температура жидкого азота). Другие виды м/организмов- термофильные м/организмы, рост которых наблюдается при 800С и выше.
Многие микроорганизмы устойчивы к высокому гидростатическому давлению (в глубинах морей и океанов; месторождениях нефти). Также многие м/организмы сохраняют жизнедеятельность в условиях глубокого вакуума. Некоторые м/организмы выдерживают высокие дозы ультрафиолетовой или ионизирующей радиации.
В контрольной работе я хотела бы рассмотреть такие организмы как бактерии и грибы.
Предмет и задачи микробиологии
Микробиология (от греч. mikros – малый, bios – жизнь, logos – учение) изучает строение, жизнедеятельность, закономерности и условия развития мельчайших организмов, использование их полезных свойств и устранение вредных. Различают: общую (изучает основные закономерности развития и жизнедеятельности микробов и их роль в природе; является основой для других направлений), медицинскую (изучает патогенные для человека микробы, разрабатывает методы профилактики, диагностики и лечения болезней), ветеринарную, сельскохозяйственную (изучает роль микробов в почвообразовательных процессах, увеличение плодородия почвы и т.д.), техническую (изучает научные основы использования действия микробов в промышленности с целью создания полезных продуктов, разрабатывание методов предохранения различного сырья от порчи), водную (изучает микрофлору различных водоемов, питьевой воды, роль микробов при очистке сточных вод), экологическую и др. микробиологии. Объектами исследования являются бактерии (бактериология), вирусы (вирусология), грибы (микология), водоросли (альгология) и т.д. Задачи: 1) получение высокоактивных штаммов; 2) изучение закономерностей смешанного культивирования (Z.B. получение биотоплива, очистка сточных вод, получение антибиотиков и витаминов); 3) защита высокоактивных штаммов от бактериофагов; 4) разработка методов сохранения высокопродуктивных штаммов микроорганизмов (морозильная (-270о), сушка, пересев).
Основные этапы развития микробиологии
1) Открытие в 1676 г. Антонием ван Левенгуком; изготовление линз, увеличивающих в 200–300 раз. В книге «Тайны природы, открытые Антонием Левенгуком» описал и зарисовал многие микроорганизмы, обнаруженные в различных настоях, в колодезной воде, на мясе и др. объектах. Открытие Левенгука вызвали интерес ученых, но слабое развитие в XVII и XVIII вв. промышленности и с/х, господствующее в науке схоластическое направление препятствовали развитию естественных наук Þ долгое время наука о микробах носила описательный характер. Важное принципиальное значение имеют малоизвестные работы М.М. Тереховского (диссертация 1775 г.), он изучал влияние на микробы охлаждения и нагревания, действия различных хим. веществ; он считал, что микробы представляют собой особую группу живых существ, которые не способны самопроизвольно зарождаться.
2) Прогресс промышленности в XIX в., вызвавший развитие техники и различных отраслей естествознания, обусловил развитие микробиологии, возросло ее практическое значение. Микробиология стала опытной наукой, изучающей роль «загадочных» организмов в природе и жизни человека. Появились более совершенные микроскопы. Луи Пастер (1822–1895) показал, что микробы различаются не только внешним видом, но и характером жизнедеятельности; они вызывают разнообразные химические превращения в субстратах, на которых развиваются; он изучал различные виды брожения (спиртовое, маслянокислое), доказал существование анаэробных организмов, доказал, что жизнь может произойти только от другой жизни.
Значительным вкладом в микробиологию явились исследования немецкого ученого Роберта Коха (1843–1910). Им были введены в практику плотные питательные среды для выращивания микробов; это позволило разработать методы выделения (изолирования) микробов в «чистые культуры», т.е. культуры каждого вида в отдельности, развившиеся в одной клетке. Изучал возбудителей сибирской язвы, туберкулеза, холеры и др. заразных болезней; ввел методы окраски микробов анилиновыми красителями. В 1905 – нобелевская премия.
Л.С. Ценковский (1822–1877) изучал генетические связи протистов, низших водорослей, слизистых грибов и бактерий с животными и растениями. Он впервые в России изготовил и применил на практике вакцину против сибирской язвы овец.
И.И. Мечников (1845–1916) разработал фагоцитарную теорию иммунитета – невосприимчивости организма к заразным болезням. Ему принадлежит идея использования антагонистических отношений между микробами, что легло в основу современного учения об антибиотиках; с ним связано развитие микробиологии в России; он организовал первую в России бактериологическую лабораторию (в Одессе). В 1903 – нобелевская премия.
Н.Ф. Гамалея (1859–1949) изучал вопросы медицинской микробиологии; открыл станцию по прививкам против бешенства; описал явление бактериофагов.
3) Эколого-физиологическое направление. С.Н. Виноградский (1856–1953) открыл процесс нитрификации – окисление аммонийного азота до азотной кислоты при участии особой группы бактерий, эти бактерии не нуждаются для своего роста в готовых органических соединениях; они ассимилируют CO2 без участия хлорофилла и солнечной энергии (хемосинтез). Открыл явление фиксации атмосферного азота анаэробными бактериями; найдены бактерии анаэробного разложения пектиновых веществ. Открыл новый вид жизни хемолитоавтотрофный: СО2-источник углерода; Fe, S, H2- источник энергии. Вместе с Мартином Бейеринком (1851–1931) открыли метод элективных сред (среды подходят только для одного вида микробов, а для др. нет). Бейеринк открыл клубеньковые бактерии. Они изучали микробы в природных условиях, в основном в почве. Д.И. Ивановский в 1892 г. открыл вирусы (вирус табачной мозаики).
4) Биохимическое направление. А. Клюйер (1888–1956); К. ван Ниль. Принцип биохимического единства жизни: а) единство конструктивных процессов; б) единство энергетических процессов; в) единство хранения и передачи генетической информации.
Общая характеристика микроорганизмов
I. Роль: 1) Круговорот биогенных элементов (круговорот в-в в природе C, N, O, H, CO2, P, S); 2) Санитары планеты (разложение отмерших организмов, освобождает среду от токсичных в-в H2S, CH4 и др.) 3) Геохимические процессы (формирования месторождений нефти, Сu, железосодержащих руд, серы, фосфоритов). Место: Микробы различаются по способу питания: С-гетеротрофный (орг. в-ва), С-автотрофный (неорг. в-ва). Э. Геккель (1866 г.): царство протисты (простейшие): 1) высшие (грибы, микроводоросли), 2) низшие (синезеленые водоросли, бактерии); Р. Станнер, К. ван Ниль: деление на прокариот (низшие – одна внутренняя полость); эукариот (высшие – много полостей, органеллы в клетке). Виттекер (1969 г.) monera (прокариоты – 3,5 млрд. лет)Þ Protista (простейшие – 900 млн. лет)Þ 1) растения (фототрофное – питание посредством фотосинтеза); 2) животные (фагоцитарное – питание твердыми частицами орг. в-ва); 3) грибы (осмотрофное – питание готовыми растворенными орг. в-вами).
II. Св-ва: 1) микроскопические размеры (1 мкм) – в 1г бактериальной массы – 1012 бакт. клеток; 2) Быстрый обмен в-в через цитоплазматическую мембрану. Правило Рубмера: энергетический обмен клетки пропорционален поверхности клетки, а не объему. 3) Общие методы исследования и культивирования (микроскопические методы).
III. Виды и размеры
Группы | Размеры |
Эукариоты Прстейшие Микроводоросли Грибы Дрожжи | 100–300 10–100 5–10 мкм 3–5*10 |
Прокариоты Бактерии | 0,1–5 мкм |
Неклеточн. Строение Вирусы Бактериофаги | 20–300 нм 20–300 нм |
Молекула белка Диаметр | 3–13 нм 0,1 нм |
IV. Распространение: Могут занимать любые экологические ниши, не связаны с ареалом: почва, вода, воздух.
Рост микроорганизмов
Рост микробной клетки – это увеличение размера и массы одной особи между двумя делениями. В результате обменных процессов с окружающей средой и внутриклеточного метаболизма происходит рост и развитие организма. Конечная цель развития м/организма - размножение. Под ростом подразумевается не только рост отдельной клетки, но и большее увеличение числа клеток в результате размножения, т.е. рост культуры микроорганизмов.
Культура представляет собой совокупность особей, которое занимает определенное жизненное пространство.
Культуру называют чистой, если она представлена м/организиами одного вида.
Культуру, в которой содержится более чем один вид микробов, называют смешанной или гетерогенной.
Рост микроорганизмов зависит в первую очередь от наличия воды: грибы способны расти на субстрате, содержащий 12% воды, бактериям требуется для роста более 20%.
По потребности в воде для роста м/организмы подразделяются на три группы: гидрофиты-влаголюбивые, мезофиты-средневлаголюбивые и ксерофиты-минимально потребляющие воду. Большинство бактерий являются гидрофитами.
В питательной среде должны присутствовать все элементы, из которых строится клетка, и в такой форме, которую микроорганизм способен усваивать. В больших количествах необходимы макроэлементы: сера, фосфор, кислород и микроэлементы: цинк, никель, молибден и др.
Для роста м/организмов требуется и ряд дополнительных условий. микроорганизмы нуждаются:
- в определенных концентрациях некоторых хим. веществ, особенно водородных ионов;
- в совершенно определенном соотношении разных ионов;
- в поддержании определенного окислительно-восстановительного потенциала среды.
Некоторые требовательные м/организмы и мутанты нуждаются кроме того, в отдельных соединениях, которые сами синтезировать не могут. Такие необходимые дополнительные вещества называют факторами роста, их роль могут играть аминокислоты, витамины, пурины.
Условия роста
При удовлетворении всех потребностей в питательных веществах рост м/организмов зависит от определенных условий:
- рН среды ;
- температуры;
- осмотического давления.
Решающее значение для роста м/организмов имеет РН Среды. Большинство м/организмов лучше растет, когда концентрации Н ОН одинаковы (РН - 7,0). Грибы предпочитают более низкие значения РН.
К температуре различные микроорганизмы относятся по-разному. Большинство почвенных и водных бактерий лучше растут от 20 до 45 С-мезофилы. А спорообразующие бактерии лучше растут при температуре выше 45 С- термофильные. Термофилы обитают в горячих источниках, гейзерах Камчатки, самонагревающихся скоплениях различных органических материалов ( в зерне, сене, навозе, кампосте), в продуктах прошедших тепловую обработку. Другую крайность представляют психрофильные бактерии, которые растут при температуре ниже 20 С (железобактерии).
Психрофилы встречаются в полярных зонах, в северных морях, снегах Арктики, на охлажденных продуктах. Термотолерантными называют бактерии, которые могут расти в области средних температур, но могут переносить и более высокие температуры (мин-37 С, мах-50 С).
К осмотическому давлению питательной среды большинство бактерий проявляет большую устойчивость. Многие бактерии могут расти на средах с содержанием солей от 0,1 до 10%.
Всем аэробным бактериям в качестве акцептора необходим кислород. Для бактерий, которые растут в тонких слоях жидкости в присутствии воздуха кислорода достаточно. В жидких средах при большом объеме жидкости аэробные бактерии могут расти только на поверхности. Для этого требуется аэрация. М/организмы способны использовать тоьлко растворенный кислород.
Для роста строго анаэробных бактерий исключается доступ кислорода воздуха. В технике применяют: прокипяченные, лишенные воздуха питательные среды, закрытые без пузырьков сосуды, применение различных веществ, поглощающих кислород и др.
Поступление питательных веществ в клетку
Поступление веществ в клетку и выделение продуктов обмена в окружающую среду происходит у микроорганизмов через всю поверхность тела путем осмоса или адсорбции. На интенсивность этих процессов оказывают различные факторы: разность концентрации питательных веществ в клетке и за ее пределами, а также проницаемость для них плоуменной оболочки.
Осмос представляет собой диффузию веществ в растворах через полупроницаемую мембрану.
Возникает осмос под действием разности осмотических давлений в растворах по обе стороны полупроницаемой мембраны. Величина осмотического давления раствора зависит от молярной концентрации растворенных в нем веществ.
Оболочка клетки проницаема и задерживает лишь микромалекулы. Цитоплазматическая мембрана клетки обладает полупроницаемостью: она является осмотическим барьером, регулируя поступление в клетку и выход из нее растворенных веществ. Вещества не растворимые в воде, белки, не могут быть использованы клеткой. Они могут проникнуть в нее лишь после расщепления на более простые, что происходит с помощью экзоферментов микробов.
Таким образом, при осмотическом проникновении пит.веществ в клетку движущей силой служит разность осмотических давлений между средой и клеткой. Такой пассивный перенос веществ не требует затраты энергии и протекает до выравнивания концентрации с наружным раствором.
Поступившие в клетку вещества включаются в реакцию конструктивного и энергетического обмена, концентрация некоторых из них будет ниже, чем в среде, и поступление данных веществ возможно до полного исчерпания их из субстрата.
Если микроорганизм попадает в субстрат, осмотическое давление которого выше, чем в клетке, то цитоплазма отдает воду во внешнюю среду. Питательные вещества в клетку не поступают, содержимое клетки уменьшается в объеме и протопласт отстает от клеточной оболочки. Это явление называется плазмолизом клетки.
При чрезмерном низком осмотическом давлении внешней среды может наступить плазмоптис клетки - явление обратное плазмолизу, когда вследствии высокой разности осмотических давлений цитоплазма переполняется водой и приводит к разрыву клеточной оболочки.
Второй путь поступления веществ в клетку - активный. Путем переноса их особыми, локализованными в цитоплазматической мембране веществами ферментной природы. Эти перегсчики, называемые пермеазами, обладают субстратной специфичностью.
Каждый транспортирует только определенное вещество. На внешней стороне цитоплазматической мембраны переносчик адсорбирует вещество вступает с ним во временную связь и отдает на внутренней стороне ее транспортируемое вещество в цитоплазму.
К температуре различные микроорганизмы относятся по-разному. Большинство почвенных и водных бактерий лучше растут от 20 до 45 С-мезофилы. А спорообразующие бактерии лучше растут при температуре выше 45 С- термофильные. Термофилы обитают в горячих источниках, гейзерах Камчатки, самонагревающихся скоплениях различных органических материалов ( в зерне, сене, навозе, кампосте), в продуктах прошедших тепловую обработку. Другую крайность представляют психрофильные бактерии, которые растут при температуре ниже 20 С (железобактерии).
Психрофилы встречаются в полярных зонах, в северных морях, снегах Арктики, на охлажденных продуктах. Термотолерантными называют бактерии, которые могут расти в области средних температур, но могут переносить и более высокие температуры (мин-37 С, мах-50 С).
К осмотическому давлению питательной среды большинство бактерий проявляет большую устойчивость. Многие бактерии могут расти на средах с содержанием солей от 0,1 до 10%.
Всем аэробным бактериям в качестве акцептора необходим кислород. Для бактерий, которые растут в тонких слоях жидкости в присутствии воздуха кислорода достаточно. В жидких средах при большом объеме жидкости аэробные бактерии могут расти только на поверхности. Для этого требуется аэрация. М/организмы способны использовать тоьлко растворенный кислород.
Для роста строго анаэробных бактерий исключается доступ кислорода воздуха. В технике применяют: прокипяченные, лишенные воздуха питательные среды, закрытые без пузырьков сосуды, применение различных веществ, поглощающих кислород и др.
Строение клеток прокариотов и эукариотов; архебактерии
Признак | Прокариот | Эукариот |
Размеры | <5 мкм | >5 мкм |
Ядро | Неограниченная мембрана внутри клетки; нуклеотид | Истинное ядро; ядерного в-ва больше |
Хромосома | 1 | >1 |
Митохондрии (силов. Станции) | нет | есть |
Хлоропласты | нет | есть |
Эндоплазмат. сеть | нет | есть |
Аппарат Гольджи Деление клеток | нет амитоз (прямое) | есть метоз |
Половой процесс | Редко; часто геном может проникать в другую клетку | метоз |
Рибосомы (синтез белка) | 70S – единица Сведберг | 80S |
Метаболизм (обмен в-в) | Дыхание: аэробное, анаэробное, фотосинтез: 3 типа, брожение | М.мунифицирован (дыхание, оксигенный фотосинтез) |
Архебактерии не относятся ни к прокариотам, ни к эукариотам: нет муреинового слоя: другой способ фиксации углекислоты (Z.B. метанобразующие, галобактерии, сероокисляющие, серовосстанавливающие бактерии).
Грибы.
Fungi
(лат.);
Mices
(греч.)
Распространение; повсеместно, споры грибов встречаются в любых экосистемах. Почвенные, водные, паразиты животных, человека, растений. Наибольшее кол-во грибов встречается в почве. Способны разлагать биополимеры, питаются продуктами их гидролиза, поэтому выполняют очень большую работу в биохим. Цикле, особенно С, по минерализации орг. в-в. Цитология: эукариоты, имеют общие черты и с растениями и с животными (есть вакуоли, не способны к движению, но являются гетеротрофами, т. к. нет хлорофилла). Состав клеточной стенки: хитин, целлюлоза. Морфология форма клеток – нитевидная (гифы, в совокупности образуют мицелий). Гифы бывают вегетативные и плодоносящие. Мицелий может быть как с перегородками, так и без них (одноклеточный и многоклеточный). Толщина 5–50 мкм. Размножение: 1) вегетативное (верхушечный рост или обрывками мицелия); 2) бесполое (Споры образуются на плодоносящих гифах (конидиеносцах). Спороношение – важный таксономический признак. Споры могут быть эндоспорами (у более примитивных) и экзоспорами). 3) Половое (спорообразованию предшествует половой процесс, в качестве органа размножения у многоклеточных образуются базидии со спорами или сумки со спорами; у одноклеточных – зигота (зигоспора))
Классификация грибов, значение
1) Архимицеты – наиболее примитивные, микроскопических размеров; зачаточный мицелий или нет мицелия; тело представляет собой голый комочек протоплазмы, который покрывается оболочкой в процессе превращения в спорангий; размножаются бесполым путем посредством подвижных спор – зооспор, развивающихся в спорангие. Являются внутриклеточными паразитами низших и высших растений. Z.B. Ольпидиум Olpidium brassicae; Синхитриум Synchytrium endobioticum.
2) Фикомицеты – хорошо развитый одноклеточный, многоядерный мицелий; бесполое размножение присходит при помощи неподвижных спорангиеспор или подвижных зооспор, при половом процессе образуется зигота. Z.B. Фитофтора Phytophthora infenstans; Мукор Mucor; Ризопус Rhizopus/
3) Аскомицеты – сумчатые грибы, мицелий многоклеточный, состоит из многоядерных клеток. Бесполым путем размножаются при помощи конидий; при половом процессе образуются аскоспоры в сумках (асках). Голосумчатые – не образуют плодовые тела Z.B. эндомицес Enlomyces. Плодосумчатые – образуют плодовые тела Z.B. пенициллиум Penicillium; аспергилловые Aspergillus niger, awamori.
4) Базидиомицеты – бесполое размножение редко; основными органами размножения являются базидии с базидиоспорами. Одноклеточные базидии: базидии развиваются слоями на плодовых телах Z.B. шляпочные, трутовики, домовые грибы. Многоклеточные базидии – большинство не имеет плодовых тел; Z.B. головневые грибы; ржавчинные грибы. Являются основной массой съедобных грибов р. Boletus, Вешенки, шампиньоны – немикаридные, не нуждаются в симбиозе с высшими растениями, могут выращиваться на экстрактах.
5) Несовершенные грибы – многоклеточные грибы, половое раз0множение не обнаружено; большинство размножается конидиями, некоторые образуют оидии, другие способны к почкованию или не имеют специальных органов размножения. Z.B. фузариум, ботритис, оидиум и др.
Применение: 1) экологическое (цикл С); 2) отрицательная роль: многие грибы вызывают биоразрушения, выделяя экзоферменты (резина, древесина), 3) биотехнологическое: получение орг. к-т, антибиотиков, сыров, ферментов.
Дрожжи
Одноклеточные, неподвижные организмы: (3–5)*(8–10) мкм; форма округлая, овально-яйцевидная, эллипсоидальная, редко цилиндрическая или лимонообразная; она может меняться в зависимости от условий среды. Дрожжи относятся к грибам, но истинного мицелия не дают, у некоторых есть псевдомицелий. Размножение: вегетативное (почкование) и половое. Распространение: в почве, на плодах и листьях растений. Представители и применение:
Saccharomyces cerevisiae – в пр-ве спирта, в пивоварении, квасоварении, хлебопечении; vini – в виноделии; lactis – спиртовое брожение в кисломолочных продуктах; Candida – «кормовые дрожжи», образуют пленки на спиртных напитках, на пов-ти квашенных овощей, в бродильных аппаратах; Torulopsis kefirii – пр-во кумыса и кефира, «кормовые дрожжи».
Классификация дрожжей
Классифицируют дрожжи по способам их вегетативного размножения (почкование, деление), способности к спорообразованию, а также по физиологическим признакам.
Для пищевой промышленности наибольшее значение имеет род сахаромицес (Saccharomyces). В этот род входят как природные виды, так и виды, полученные путем селекции. Их называют расами дрожжей. Они различаются способностью сбраживать разные сахара, интенсивностью брожения, количеством образуемого спирта, оптимальной температурой брожения, образованием спор и др.
В пищевой промышленности наиболее широко используют два вида дрожжей рода Saccharomyces: Sacch. cerevisiae и Sacch. ellipsoi-deus, или Sacch. vini.
Сахаромицес церевизиа (Sacch. cerevisiae) имеют круглую или овальную форму клетки. Их используют для получения этилового спирта, а также в пивоварении, квасоварении, хлебопечении Каждое производство использует свои специфические расы дрожжей, дающие возможность получить конечный продукт с заданными свойствами.
Размножение дрожжей
Размножаются дрожжи почкованием, лишь немногие размножаются делением клетки.
Процесс почкования состоит в том, что на клетке появляется бугорок (иногда их несколько), который постепенно увеличивается в размерах. Этот бугорок называют почкой. По мере роста почки между ней и производящей клеткой образуется перетяжка. Канал, соединяющий вновь формирующуюся дочернюю клетку со старой, материнской, клеткой, постепенно сужается и, наконец, молодая клетка отшнуровывается (отделяется). При благоприятных условиях этот процесс длится около двух часов.
Почкованию предшествует ряд последовательно протекающих в клетке биохимических процессов; происходит деление ядра, и одно из образовавшихся ядер вместе с частью цитоплазмы и другими клеточными элементами переходит в молодую клетку.
После завершения процесса почкования молодая клетка часто не отделяется от материнской, а остается на ней. Почкующиеся клетки обычно образуют не одну, а несколько почек.
Вместе с этим может начаться почкование и молодых клеток. Так постепенно образуются скопления из многих соединенных между собой клеток, называемые сростками почкования. В некоторых случаях, особенно на поверхности жидких сред, где клетки дрожжей всегда бывают более вытянуты, такие сростки почкования напоминают мицелий плесневых грибов. Однако это ложный мицелий, представляющий собой тонкую пленку, которая легко разрушается при взбалтывании жидкости. Только отдельные дикие (обитающие в природных условиях) так называемые пленчатые дрожжи образуют на поверхности жидкостей более или менее толстые морщинистые пленки, прочно удерживающиеся при взбалтывании. Такие дрожжи нередко вызывают порчу вина, пива, квашеных овощей.
При неблагоприятных условиях почкование дрожжей замедляется или совсем приостанавливается, а некоторые клетки переходят в состояние покоя.
Покоящиеся клетки (артроспоры) отличаются толстой и плотной, большей частью двухслойной оболочкой, а также значительным содержанием запасных веществ, например жира и гликогена. Они более устойчивы, чем вегетативные клетки, к повышенной температуре и высушиванию.
Попадая в благоприятные условия развития, покоящиеся клетки почкуются, как и обычные вегетативные клетки.
Помимо почкования многие дрожжи размножаются также с помощью спор. Споры образуются внутри клетки и находятся в ней, как в сумке, что и позволяет относить их к сумчатым грибам (аскомицетам). Число спор в клетке разных видов дрожжей различно. Их может быть две, четыре, а иногда восемь и даже двенадцать.
Споры большинства дрожжей округлые или овальные, но у некоторых видов — игловидные, шляповидные, У многих на поверхности спор имеются различные образования типа выростов, бородавок, ободков и др.Образование спор у дрожжей может происходить бесполым и половым путями. При бесполом образовании спор ядро клетки делится на столько частей, сколько образуется спор у данного вида дрожжей. Каждое новое ядро окружается цитоплазмой и покрывается оболочкой. Образованию спор половым путем предшествует слияние (копуляция) клеток. У некоторых дрожжей копулируют прорастающие споры.
Споры дрожжей несколько более устойчивы к вредным воздействиям, чем вегетативные дрожжевые клетки, но менее стойки по сравнению с бактериальными спорами. Попав в благоприятные условия, споры прорастают в клетки.
У многих так называемых культурных дрожжей, т. е. культивируемых человеком для производственно-хозяйственных целей, способность к спорообразованию в значительной степени ослаблена, а иногда полностью утрачена (аспорогенные расы).
Такие дрожжи можно вернуть к спорообразованию только принудительным путем. Для этого молодую культуру дрожжей переводят из условий обильного питания в условия голодания. При благоприятной аэрации и температуре дрожжи образуют споры.
Дрожжи, способные к спорообразованию, нередко называют истинными дрожжами, а не образующие спор (аспорогенные) — ложными дрожжами, или дрожжеподобными организмами.
Строение клетки эукариотов
Цитоплазма – коллоидный р-р аминокислот, углеводов, минеральных солей в воде (50–60% объема клетки); вязкость превышает вязкость воды в 800 раз; Митохондрии явл. «силовыми станциями» клетки; Рибосомы – органеллы, в которых происходит синтез белка; Лизосомы содержат ферменты, расщепляют чужие биополимеры, обязательно окружены мембраной (Автолиз – самопереваривание клетки, когда клетка старая: разрушаются мембраны); Аппарат Гольджи – упаковка ненужных в-в и транспорт их из клетки через мембрану; Эндоплазматическая сеть связывает ядро с рибосомами, это сложная сис-ма взаимосвязанных каналов, пронизывающих всю толщу клеток (гладкая, шероховатая – связана с рибосомами). Клетка представляет собой сис-му из 2х несмешивающихся между собой фаз: водной (цитоплазма со всеми переходами) и мембранной сис-мой (относительно жидкая, липопротеиновая фаза, которая пронизывает всю цитоплазму).
Строение клетки прокариотов
Цитоплазма полужидкая, вязкая, коллоидная масса, в нее входят белки, нуклеиновые к-ты, липиды, вода; Цитоплазматическая мембрана обладает полупроницаемостью, богата липидами и ферментами; Рибосомы – синтез белка; Мезосомы – энергетические процессы: окисление орг. в-в, синтез энергозапасающих в-в (АТФ); различные включения, являющиеся запасными питательными в-вами (гликоген, волютин); Ядро отсутствует, но имеется большое кол-во ядерного в-ва, в частности дезоксирибонуклеиновой к-ты (ДНК); Слизистый чехол (полисахариды) – необязательный компонент клетки, предохраняет от высыхания, от мех-ого повреждения, д-ия хим. агентов и лекарственных в-в; Клеточная стенка (также необязательна) состоит из муреинового комплекса (гликопептиды).
Бактерии
Главным образом одноклеточные, иногда образуют нити и колонии; относятся к растительному миру, но не имеют хлорофилла. Морфология: 1) Шаровидные – кокки (микрококки, диплококки, тетракокки, стрептококки, сарацины стафилококки); 2) Палочковидные – цилиндрические (одиночные, диплобактерии, стрептобактерии); 3) Извитые – изогнутые (вибрионы, спириллы, спирохеты); Некоторые бактерии меняют форму в зав-ти от стадии развития – плеоморфизм. Размножение: путем деления клетки пополам, при этом в средней части клетки образуется перегородка, которая, расщепляясь, разделяет клетку на 2 новые. Спорообразование служит для перенесения неблагоприятных условий; спора покрыта спец. в-вом: дипикалиновой к-той, все в-во сгущается в центре и занимает объем в 10 раз меньше, чем объем самой клетки, в споре мало воды, белок находится в спец. состоянии, спора может выдержать нахождение в H2SO4. В благоприятных условиях споры набухают вследствие поглощения воды и прорастают в вегетативные клетки, происходит растворение или разрыв внешней оболочки и молодая бактерия выходит наружу. Способы движения 1) Жгутики – спирально извитые тонкие белковые нити, способные сокращаться: а) монотрихи – 1 жгутик, б) лофотрихи – пучком, в) перитрихи – на всей пов-ти тела; 2) Скольжение (по твердому или полутвердому экстракту) – имеется спец. слой белка, который может сокращаться по типу бегущей волны (с выделением слизи или без нее); 3) Таксисы – направленное движение бактерий: а) хемотаксисы – в сторону необходимых пит в-в; б) фототаксисы – к свету; в) аэротаксисы – к кислороду (у аэробных бактерий).
Грамположительные и грамотрицательные бактерии
По строению клет. стенки и содержанию гликопептида бактерии делятся на грам+ и грам – (обеспечиваются)
Свойства | Грам+ | Грам- |
Гликопептиды Тейхоевые к-ты Фотосинтез Скольжение Спорообразование Мицелевый рост Чувсвительность к антибиотикам | +80% + - - + + + | + 8–20 - + + - - - |
Классификация бактерий
ВидÞродÞсемействоÞпорядокÞкласс. Сущ. естественная (только создается в настоящее время) и искусственная классификация; используется морфо-физиологический метод: 1) морфологические признаки (размер, форма, окраска…), 2) физиологические признаки (тип питания отношения к to, O2, pH, потребность к факторам роста – витамины), 3) культуральные признаки (видно невооруженным глазом при посеве на разные среды), 4) генетические ((А+Т)/(Г+Ц)*100%), 5) гибридизация ДНК, 6) Строение 16S‑РНК (небольшие отрезки РНК). Определитель бактерий Берджи: по морфологическим и физиологическим признакам, всего 35 групп бактерий, они разделяются на 4 основные категории: 1) Грам – эубактерии, имеющие клеточные стенки; 2) Грам+ –''–; 3) Эубактерии, лишенные клеточных стенок; 4) Архебактерии. Применение: 1) Древнее пр-во пищевых продуктов и напитков, 2) антибиотики и стероидные препараты, 3) получение внеклеточных полисахаридов (для переливания крови) Lenconosta mesentraids, 4) получение витаминов «С» Gluconodacter oxydans; «В» Propioni bacterium, 5) растворители (ацетон, бутанол, спирт, орг. к-ты), 6) материалы (смазочные масла Xanthomonas) 7) выщелачивание металлов из бедных руд Thiobacillus ferrooxidans), 8) в с/х пр-во удобрений, борьба с вредителями, 9) энергетика, 10) сбраживание различных отходов, 11) получение биогаза (СН4 и Н2), 12) получение микробных биосенсеров и биочипов, 13) охрана окр. Среды – переработка отходов, биодеградация ксенобиотиков.
Вирусы
Группа микробов, не имеющих клеточной структуры, отсутствуют ядро, цитоплазма и оболочка; открыты в 1892 г. Д.И. Ивановским. Размеры очень маленькие, проходили в бактериальные фильтры, видно только в электронный микроскоп, размер между мелкой бактерией и крупной белковой молекулой. Признаки: 1) аблигатные паразиты (не могут расти на искусственной среде), 2) не имеют клеточного строения (внеклеточная форма жизни), 3) отсутствие собственного обмена в-в (нет собственных ферментов), 4) мельчайшие размеры (20–300 нм). Мельчайшая частица вируса наз. вируоном, в виде них вирусы переносятся в орг-мы. Хим. состав – нуклеопротеид (ДНК или РНК, окруженная белковой оболочкой). Размножение включает: 1) прикрепление вирусных частиц к клетке хозяина, 2) проникновение вируса внутрь клетки, 3) внутриклеточное размножение вируса, 4) выход частиц вируса из клетки. Форма: сферическая, кубическая, палочковидная. 1) in vivo, 2) метод культивирования в курином бульоне (с 30-х гг.), 3) культивирование в клетках (in vitro) – клетки берут из эмбриональных тканей, 4) культивирование из опухолевых (самый передовой метод) Þ создание противовирусных вакцин.
Список литературы:
1. Гусев М.В., Минеева Л.А. Микробиология
2. Мишустин Е.Н., Емцев В.Т. Микробиология
3. Шлегель Г. Общая микробиология
4. Чачина С.Б. Лекции по микробиологии и биотехнологии
5. http://micro-biolog.ru/