Шпаргалка Шпаргалка по Теории Вероятности
Работа добавлена на сайт bukvasha.net: 2015-10-29Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.
![](https://bukvasha.net/assets/images/emoji__ok.png)
Предоплата всего
от 25%
![](https://bukvasha.net/assets/images/emoji__signature.png)
Подписываем
договор
1) свойство вероятности: 20 стр.
Свойство 1. Вероятность невозможного события равна 0, т.е.
Свойство 2. Вероятность достоверного события равна 1, т.е.
Свойство 3. Для любого события
Свойство 4. Если события А и В несовместимы, то вероятность суммы равна сумме вероятностей:
Свойство 5. (обобщенная теорема сложения вероятностей)
Свойство 6. (теорема сложения k слагаемых) Если события А1, А2,…, Аk попарно несовместимы, то
Свойство 7. Если
Свойство 8. Если
Свойство 9.
Свойство 10. Если события Н1, Н2,…,Нk образуют полную группу, то
2)условная вероятность, независимость:
Условной вероятностью события B при условии A называется вероятность события B в предположении, что событие A наступило. Обозначение
Теорема (умножение вероятностей):
Теорема (обобщенная теорема умножения).
3)формулы полной вероятности и Баеса: 23 стр.
Теорема 1. Если события Н1, Н2,…,Нn образуют полную группу, то вероятность любого события А можно вычислить по формуле полной вероятности:
Так как события образуют полную группу, то можно записать
Событие А может произойти только с одним из событий Hi, i
Замечание: при применении формулы полной вероятности события Н1,Н2,…,Нn , образующие полную группу, называются гипотезами.
Теорема 2. Пусть события Н1, Н2, …, Нn образуют полную группу, А–некоторое событие, причем P(A)≠0, тогда имеет место формула Байеса:
Замечание. При применении формулы Байеса вероятности
4)схема независимых испытаний Бернули. Полиномиальное распределение:
Предположим, что в результате испытания возможны два исхода: «У» и «Н», которые мы называем успехом и неудачей.
Предположим, что мы производим независимо друг от друга n таких испытаний.
Последовательность n испытаний называется испытаниями Бернулли, если эти испытания
независимы, а в каждом из них возможны два исхода, причем вероятности этих исходов не меняются от испытания к испытанию.
Элементарным исходом будет являться:
(w1,w2,…,wn),
Всего таких исходов 2n.
Формула (1) показывает, что события независимы.
Обозначим через µ число успехов в n испытаниях Бернулли.
По теореме сложения получим
Таким образом, получим
Предположим, что в результате испытания возможны k исходов E1, E2, …, Ek,
P(Ei)=pi,
Эта формула полиномиальное распределения, обобщающая формулу Бернулли.
5)случайные велечины, функция распределения и её свойства.
Случайной величиной Х называется функция X(w), отображающая пространство элементарных исходов Ω во множестве действительных чисел R.
Множество значений случайной величины обозначается Ωх. Одной из важных характеристик случайной величины является функция распределения случайной величины.
Функцией распределения случайной величины Х называется функция F(x) действительной переменной х, определяющая вероятность того, что случайная величина Х примет в результате эксперимента значение, меньшее некоторого фиксированного числа х.
Если рассматривать Х как случайную точку на оси ох, то F(x) с геометрической точки зрения—это вероятность того, что случайная точка Х в результате реализации эксперимента попадет левее точки х.
Свойства функции распределения.
1.Функция распределения F(x)–неубывающая функция, т.е. для
Пусть х1 и х2 принадлежат множеству Ωх и х1<х2.Событие, состоящее в том, что Х примет значение, меньшее, чем х2, т.е.
Тогда по теореме сложения вероятностей получим
2.Для любых
Замечание. Если функция распределения F(x) непрерывная, то свойство выполняется и при замене знаков ≤ и < на < и ≤.
3.
4.Функция F(x) непрерывна слева. (т.е.
5. Вероятность того, что значение случайной величины Х больше некоторого числа х, вычисляется по формуле.
Достоверное событие {-∞<x<+∞} представим в виде двух несовместимых событий.
Поскольку вероятность достоверного события равна единице, то
6)мат. ожидание дискретной случайной велечины и его свойства (включая теорему 1)
Математическим ожиданием дискретной случайной величины называют сумму произведений всех ее возможных значений на их вероятности. Обозначают математическое ожидание случайной величины Х через MX или М(Х). Если случайная величина Х принимает конечное число значений, то
Если случайная величина Х принимает счетное число значений, то
Математическое ожидание дискретной случайной величины—это неслучайная величина (т.е. число, постоянная).
1.Математическое ожидание постоянной величины равно самой постоянной
M(C)=C.
Будем рассматривать постоянную С как дискретную случайную величину, которая принимает одно возможное значение С с вероятностью 1. Следовательно,
Замечание. Произведение постоянной величины С на дискретную случайную величину Х определяется как дискретная случайная величина СХ, возможные значения которой равны произведениям постоянной С на возможные значения Х, вероятности возможных значений СХ равны вероятностям соответствующих возможных значении Х.
2.множитель можно выносить за знак математического ожидания:
M(CX)=CM(X).
Если случайная величин Х имеет ряд распределения
X | x1 | x2 | … | xn | … |
P | p1 | p2 | … | pn | … |
Ряд распределения случайной величины СХ
СХ | Сx1 | Сx2 | … | Сxn | … |
Р | p1 | p2 | … | pn | … |
Математическое ожидание случайной величины СХ
Случайные величины X1,X2,…,Xn называются независимыми, если для любых числовых множеств B1,B2,…,Bn
3.Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий
Следствие. Математическое ожидание произведения нескольких взаимно независимых случайных величин равно произведению их математических ожиданий.
4.Математическое ожидание суммы двух случайных величин рано сумме математических ожиданий слагаемых:
Следствие. Математическое ожидание суммы нескольких случайных величин равно сумме математических ожиданий слагаемых.
Математическое ожидание числа появлений события А в n независимых испытаниях равно произведению числа испытаний на вероятность появления события в каждом испытании:
Будем рассматривать в качестве случайной величины Х число появлений события А в n независимых испытаниях. Очевидно, общее число Х появлений события А в этих испытаниях складывается из чисел появлений события в отдельных испытаниях. Поэтому если Х1—число появлений события в первом испытании, Х2—во втором,…, Хn—в n-ом, то общее число появлений события
Согласно примеру 2
7)дисперсия дискретной случайной велечины и её свойства (включая теорему2): 43 стр.
Дисперсией случайной величины называется число
Средним квадратическим отклонением случайной величины Х называется число
Свойства дисперсии.
1.Дисперсия постоянной величины С равна 0. DC=0.
2.Постоянный множитель можно выносить за знак дисперсии, возводя его в квадрат:
3.Дисперсия суммы двух независимых случайных величин равна сумме дисперсий этих величин:
Следствие. Дисперсия суммы нескольких независимых случайных величин равна сумме дисперсий этих величин.
Теорема 2. Дисперсия числа появлений события А в n независимых испытаниях, в каждом из которых вероятность р появления события постоянна, равна произведению числа испытаний на вероятность появления и непоявления события в одном испытании:
Случайная величина Х—число появлений события А в n независимых испытаниях.