Реферат Теорема Котельникова
Работа добавлена на сайт bukvasha.net: 2015-10-28Поможем написать учебную работу
Если у вас возникли сложности с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой - мы готовы помочь.

Предоплата всего
от 25%

Подписываем
договор
Теорема Котельникова.
Для того, чтобы восстановить исходный непрерывный сигнал из дискретизированного с малыми искажениями (погрешностями), необходимо рационально выбрать шаг дискретизации. Поэтому при преобразовании аналогового сигнала в дискретный обязательно возникает вопрос о величине шага дискретизации
Совершенно очевидно, что точность восстановления аналогового сигнала по последовательности его отсчетов зависит от величины интервала дискретизации
Оптимальная величина интервала дискретизации устанавливается теоремой Котельникова (другие названия — теорема отсчетов, теорема К. Шеннона, теорема X. Найквиста: впервые теорема была открыта в математике О. Коши, а затем описана повторно Д. Карсоном и Р. Хартли), доказанной им в 1933 г. Теорема В. А. Котельникова имеет важное теоретическое и практическое значение: дает возможность правильно осуществить дискретизацию аналогового сигнала и определяет оптимальный способ его восстановления на приемном конце по отсчетным значениям.
Рис.14.1. Представление спектральной плотности
Согласно одной из наиболее известных и простых интерпретаций теоремы Котельникова, произвольный сигнал u(t), спектр которого ограничен некоторой частотой Fe может - быть полностью восстановлен по последовательности своих отсчетных значений, следующих с интервалом времени
Интервал дискретизации
где k — номер отсчета;
Для доказательства теоремы Котельникова рассмотрим произвольный непрерывный сигнал и(t), спектральная плотность
Мысленно дополним график спектральной плотности
аргумент t на с
Полагая, что в соотношении
период — это
Воспользуемся формулой обратного преобразования Фурье и представим исходный непрерывный сигнал в следующем виде:
Таким же образом запишем значение дискретизированного сигнала для некоторого k-то отсчета времени. Поскольку время
Сравнив это выражение с формулой для Ck , замечаем, что
Затем проделаем следующее: подставим выражение
В результате получим такую формулу:
Из этого соотношения следует, что непрерывная функция u(t) действительно определяется совокупностью ее дискретных значений амплитуды в отсчетные моменты времени
Простейшие сигналы вида
Рис. 14.2. График базисной функции Котельникова
Рис.14.3. Аппроксимация непрерывного сигнала рядом Котельникова функцией sinx/x, которая также характеризует огибающую спектральной плотности прямоугольного импульса.
Представление (точнее, аппроксимация) заданного непрерывного сигнала u(t) рядом Котельникова (2) иллюстрируется диаграммами на рис. 14.3. графике (здесь базисные функции для упрощения показаны без аргумента t построены четыре первых члена ряда, соответствующие отсчетам сигнала в моменты времени 0,
Оценим возможность применения теоремы Котельникова к импульсному сигналу u(t) конечной длительности Tх. Как известно, такие сигналы теоретически обладают бесконечно широким спектром. Однако на практике можно ограничиться некоторой верхней частотой Fв за пределами которой в спектре содержится пренебрежительно малая доля энергии по сравнению с энергией всего исходного сигнала. В радиотехнике таким критерием является содержание 90% средней мощности сигнала в границах спектра. В этом случае сигнал u(t) длительностью Tх с верхней граничной частотой спектра Fв может быть представлен рядом Котельникова с определенным, ограниченным числом отсчетов
Здесь
Рис.14.4. Представление прямоугольного импульса отсчетами:
о—двумя; б—тремя